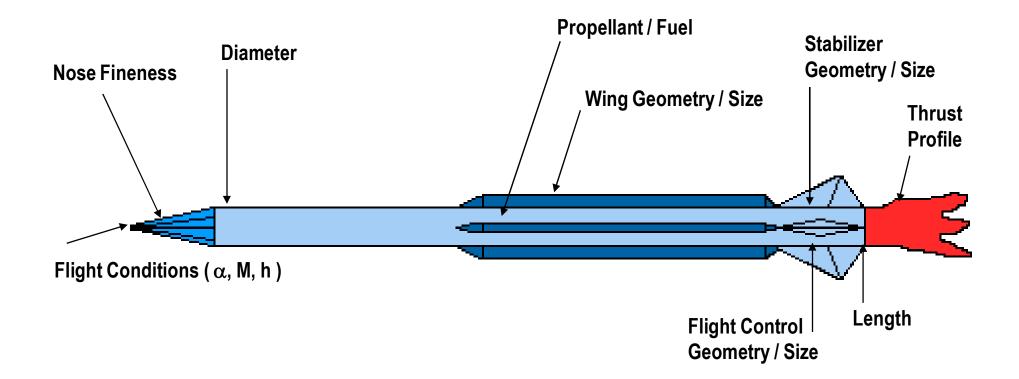
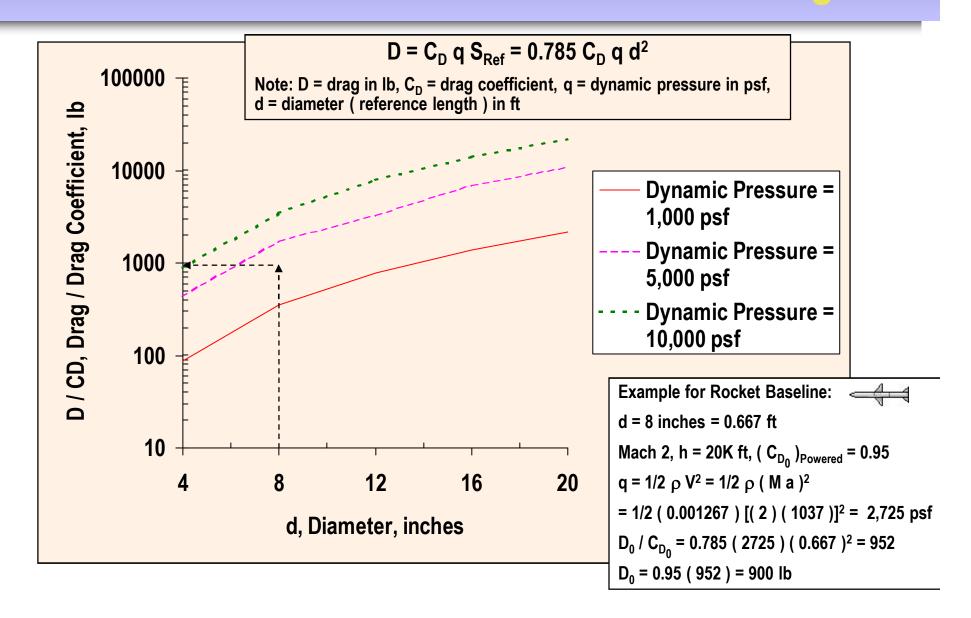
Maximizing Missile Flight Performance

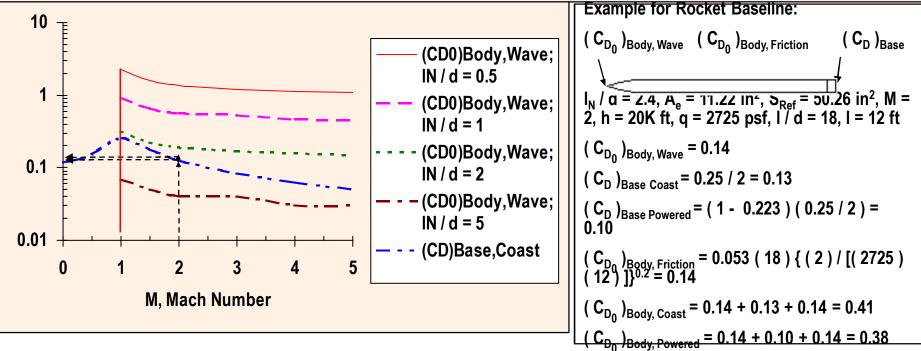


Eugene L. Fleeman Senior Technical Advisor Georgia Institute of Technology

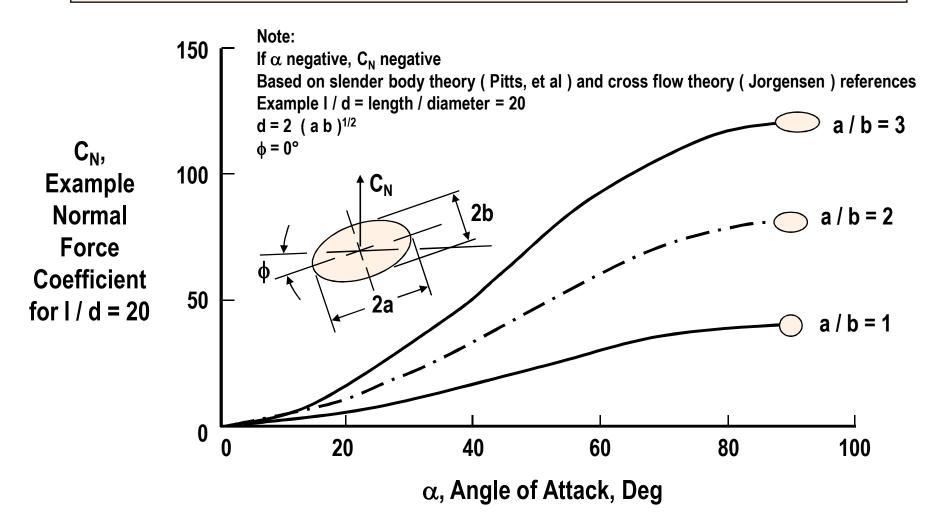


- Parameters and Technologies That Drive Missile Flight Performance
- Missile Flight Performance Prediction
- Examples of Maximizing Missile Flight Performance (Workshop)
- Summary

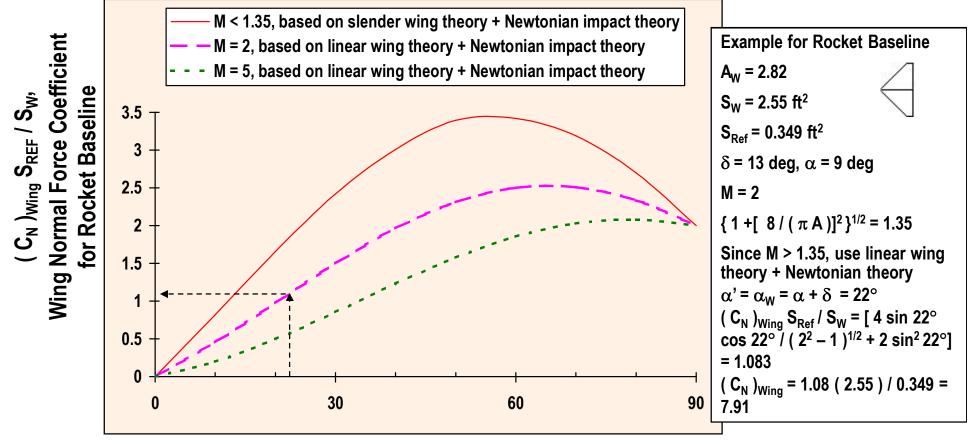
Parameters That Drive Missile Flight Performance



Small Diameter Missiles Have Low Drag


Supersonic Drag Is Driven by Nose Fineness While Subsonic Drag is Driven by Skin Friction

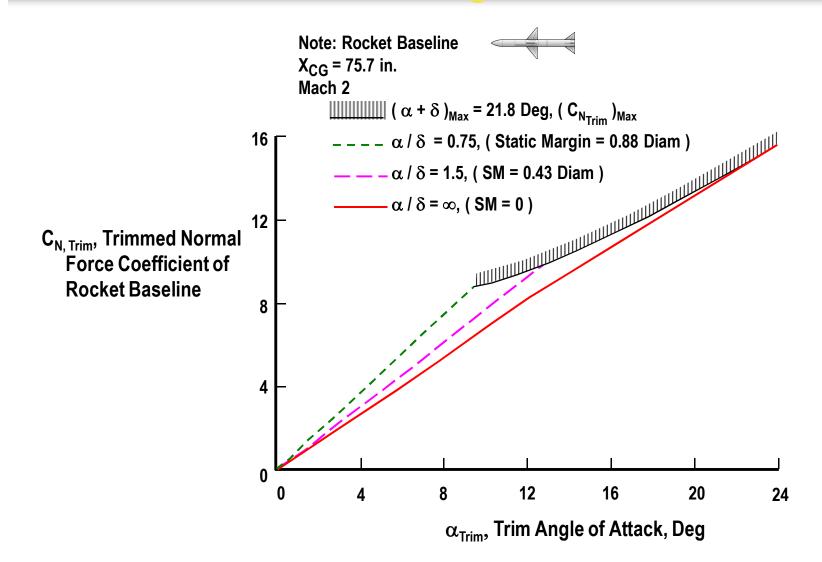
 $(C_{D_0})_{Body, Wave} = (1.59 + 1.83 / M^2) \{ \tan^{-1} [0.5 / (I_N / d)] \}^{1.69}, \text{ for M} > 1. \text{ Based on Bonney reference, } \tan^{-1} \text{ in rad.} \\ (C_{D_0})_{Base,Coast} = 0.25 / \text{ M}, \text{ if M} > 1 \text{ and } (C_{D_0})_{Base,Coast} = (0.12 + 0.13 \text{ M}^2), \text{ if M} < 1 \\ (C_{D_0})_{Base,Powered} = (1 - A_e / S_{Ref}) (0.25 / \text{ M}), \text{ if M} > 1 \text{ and } (C_{D_0})_{Base,Powered} = (1 - A_e / S_{Ref}) (0.12 + 0.13 \text{ M}^2), \text{ if M} < 1 \\ (C_{D_0})_{Body,Friction} = 0.053 (1 / d) [M / (q 1)]^{0.2}. \text{ Based on Jerger reference, turbulent boundary layer, q in psf, I in ft.} \\ (C_{D_0})_{Body} = (C_{D_0})_{Body, Wave} + (C_{D_0})_{Base} + (C_{D_0})_{Body,Friction} \\ \text{Note: } (C_{D_0})_{Body,Wave} = \text{ body zero-lift wave drag coefficient, } (C_{D_0})_{Base} = \text{ body base drag coefficient, } (C_{D_0})_{Body,Friction} = \text{ body skin friction drag coefficient, } (C_{D_0})_{Body} = \text{ body zero-lift drag coefficient, } N_N = \text{ nose length, } d = \text{ missile diameter, } 1 = \text{ missile body length, } A_e = \text{ nozzle exit area, } S_{Ref} = \text{ reference area, } q = \text{ dynamic pressure, } \tan^{-1} [0.5 / (I_N / d)] \text{ in rad}}$



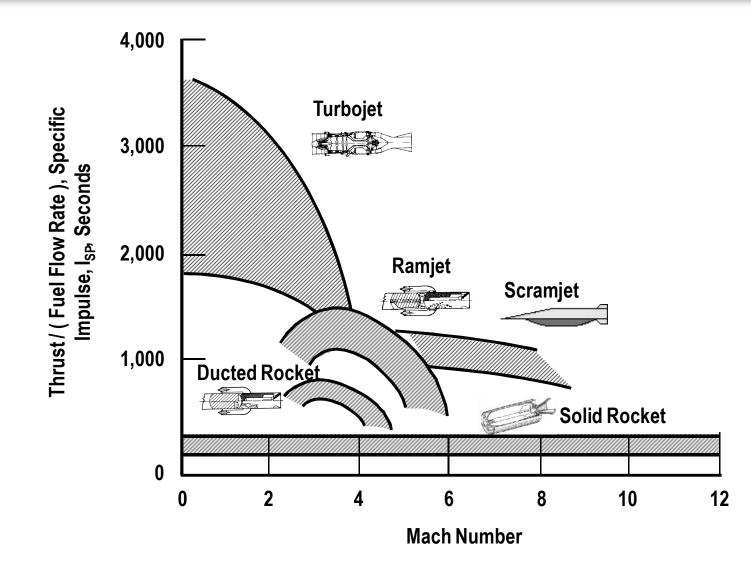
Lifting Body Has Higher Normal Force

$|C_{N}| = [|(a/b)\cos\phi + (b/a)\sin\phi|][|\sin(2\alpha)\cos(\alpha/2)| + 2(1/d)\sin^{2}\alpha]$

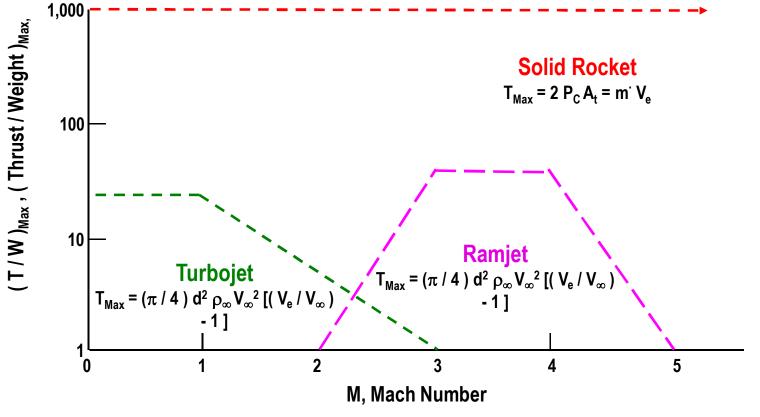
Large Surface Area Increases Normal Force and Maneuverability



 $\alpha' = \alpha_w = \alpha + \delta$, Wing Effective Angle of Attack, Deg

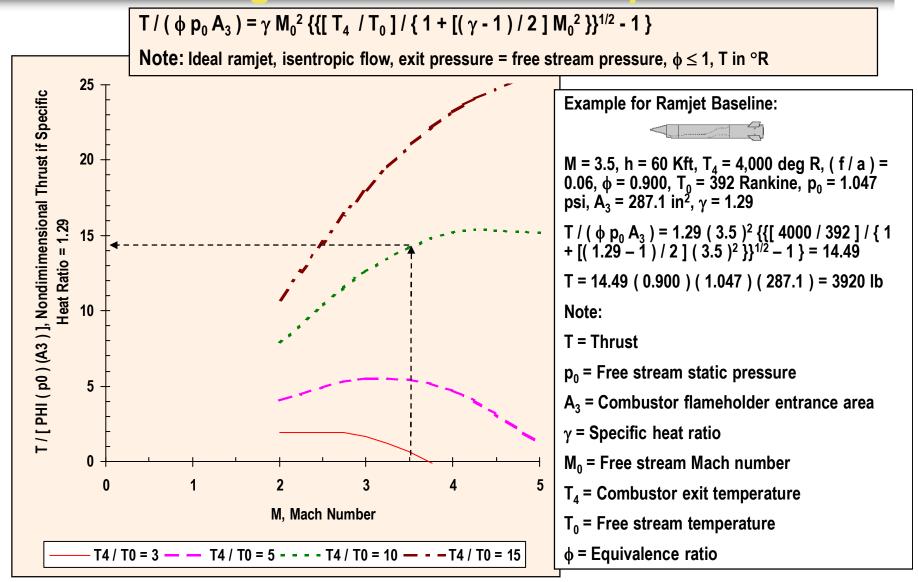

Wing Skin Friction Drag Is Larger Than Shock Wave Drag for a Thin Wing

 $(C_{D_0})_{\text{Wing,Friction}} = n_W \{ 0.0133 [M / (q c_{mac})]^{0.2} \} (2 S_W / S_{\text{Ref}}), \text{ based on Jerger, turbulent, q in psf, } c_{mac} \text{ in ft} (C_{D_0})_{\text{Wing,Wave}} = n_W [2 / (\gamma M_{\Lambda_{LE}}^2)] \{ [(\gamma + 1) M_{\Lambda_{LE}}^2] / 2 \}^{\gamma / (\gamma - 1)} \{ (\gamma + 1) / [2 \gamma M_{\Lambda_{LE}}^2 - (\gamma - 1)] \}^{1 / (\gamma - 1)} - 1 \}$ sin² $\delta_{\text{LE}} \cos \Lambda_{\text{LE}} t_{mac} b / S_{\text{Ref}}$, based on Newtonian impact theory $(C_{D_{O}})_{Wing} = (C_{D_{O}})_{Wing,Wave} + (C_{D_{O}})_{Wing,Friction}$ n_w = number of wings (cruciform = 2) 0.02 q = dynamic pressure in psf c_{mac} = length of mean aero chord in ft C_{D_0})wing, Friction S_{Ref} / ($n_W S_W$) γ = Specific heat ratio = 1.4 0.015 $M_{\Lambda_{1E}}$ = M cos Λ_{LE} = Mach number \perp leading edge δ_{IF} = leading edge section total angle $\Lambda_{\rm LF}$ = leading edge sweep angle 0.01 t_{mac} = max thickness of mac b = span 0.005 **Example for Rocket Baseline Wing:** $\begin{array}{l} n_W = 2, \ h = 20 \text{K ft} \ (\ q = 2,725 \ psf \), \ c_{mac} = \ 1.108 \ ft, \ S_{\text{Ref}} \\ = 50.26 \ in^2, \ S_W = 367 \ in^2, \ \delta_{\text{LE}} = 10.01 \ deg, \ \Lambda_{\text{LE}} = 45 \\ deg, \ t_{mac} = 0.585 \ in, \ b = 32.2 \ in, \ M = 2 \ (\ M_{\Lambda_{\text{LE}}} = 1.41 \) \end{array}$ 0 (C_{D_O})_{Wing,Friction} S_{Ref} / [$n_W S_W$] = 2 {(0.0133) { 2 / [(2725) (1.108)]}^{0.2} } = 0.00615 100 1000 10000 q, Dynamic Pressure, psf $(C_{D_0})_{Wing,Friction} = 0.00615 (2) (367) / 50.26 = 0.090$ M / cmac = 0.01 / ft - - M / cmac = 0.1 / ft $(C_{D_0})_{Wing,Wave} = 0.024$ M / cmac = 1 / ft - - - M / cmac = 10 / ft $(C_{D_0})_{Wing} = 0.024 + 0.090 = 0.11$


Relaxed Static Margin Allows Higher Trim Angle of Attack and Higher Normal Force

High Specific Impulse Provides Higher Thrust and Reduces Fuel Consumption

Solid Rockets Have High Acceleration Capability



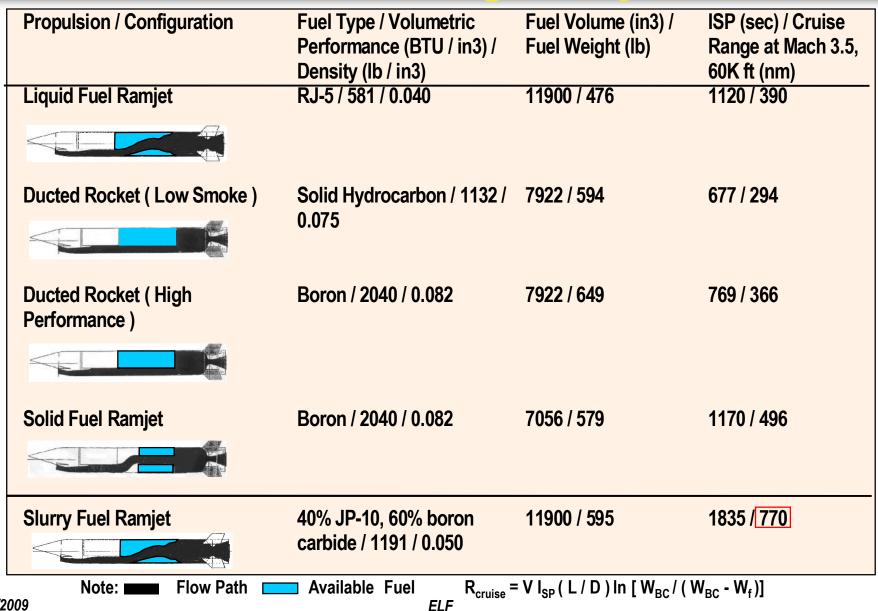
Note:

 P_C = Chamber pressure, A_t = Nozzle throat area, m⁻ = Mass flow rate

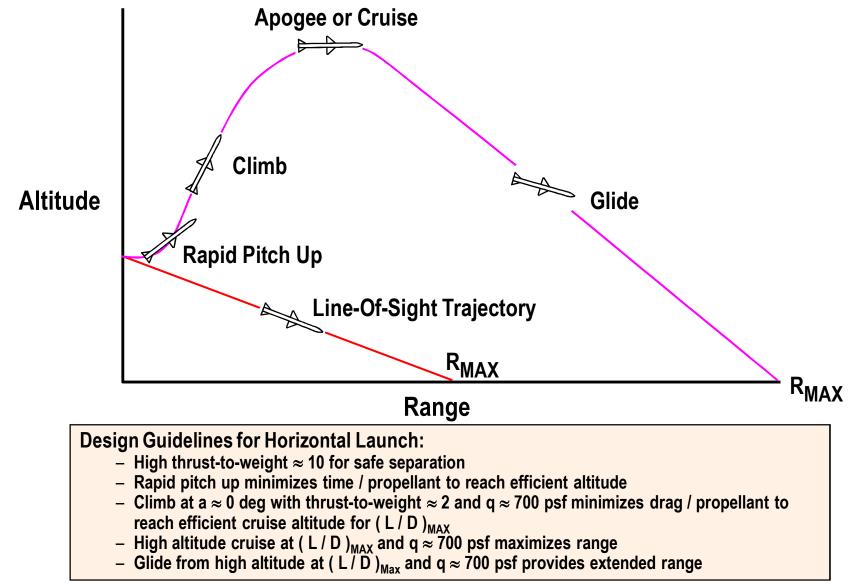
- d = Diameter, ρ_{∞} = Free stream density, V_{\infty} = Free stream velocity,
- V_e = Nozzle exit velocity (Turbojet: $V_e \sim 2,000$ ft / sec, Ramjet: $V_e \sim 4,500$ ft / sec, Rocket: $V_e \sim 6,000$ ft / sec)

High Thrust for a Ramjet Occurs from Mach 3 to 5 with High Combustion Temperature

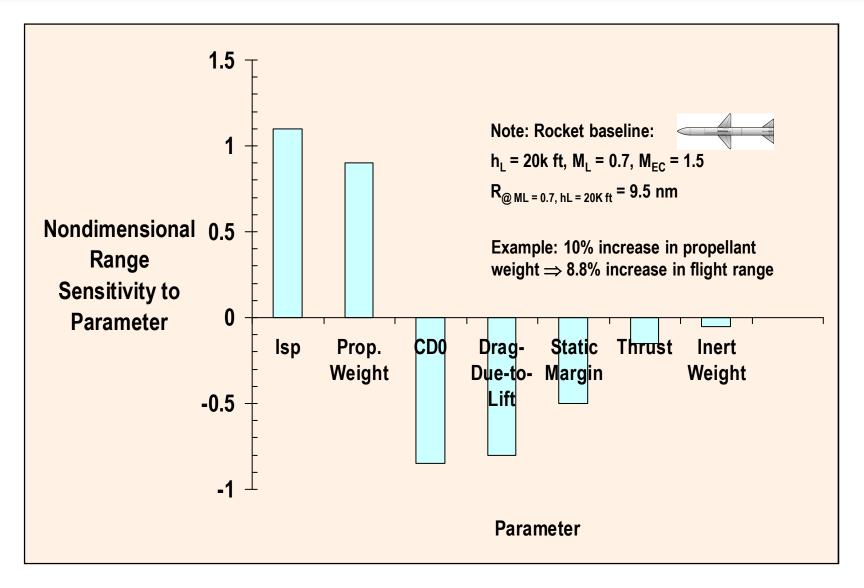
Maximum Specific Impulse And Thrust of Rocket Occur at High Chamber Pressure and Altitude

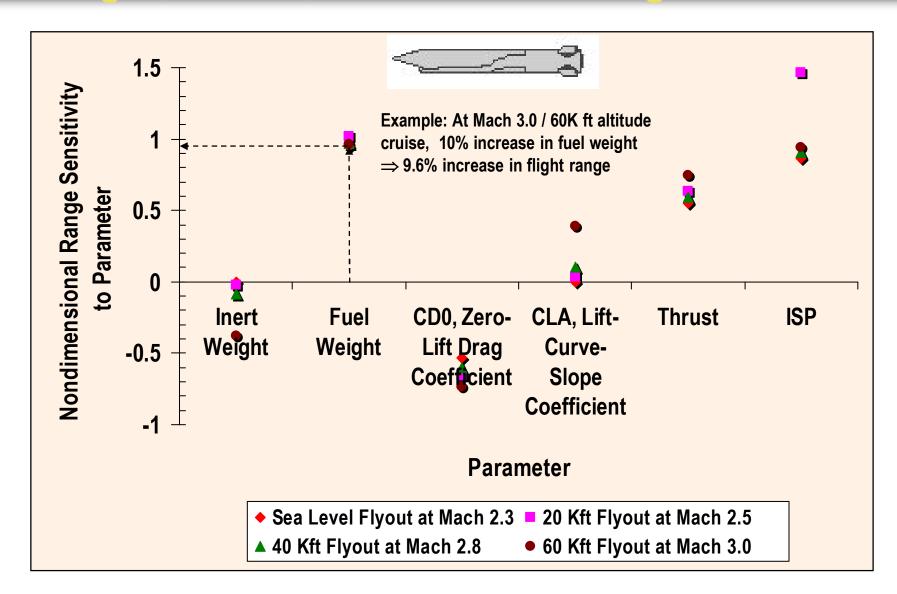

 $I_{SP} = c_d \{\{[2\gamma^2/(\gamma - 1)] [2/(\gamma + 1)]^{(\gamma - 1)/(\gamma + 1)} [1 - (p_e/p_c)^{(\gamma - 1)/\gamma}]\}^{1/2} + (p_e/p_c) \varepsilon - (p_0/p_c) \varepsilon \} c^*/g_c\}$ $T = (g_c / c^*) p_c A_t I_{SP}$ $\varepsilon = \{ [2/(\gamma + 1)^{1/(\gamma - 1)}] [(\gamma - 1)/(\gamma + 1)]^{1/2}] \} / \{ (p_e/p_c)^{1/\gamma} [1 - (p_e/p_c)^{(\gamma - 1)/\gamma}]^{1/2} \}$ 280 Isp, Specific Impulse of Rocket Baseline Note: ε = nozzle expansion ratio $p_{o} = exit pressure$ p_c = chamber pressure p_0 = atmospheric pressure 260 A_t = nozzle throat area γ = specific heat ratio = 1.18 in figure c_d = discharge coefficient = 0.96 in figure c* = characteristic velocity = 5,200 ft / sec in figure 240 **Example for Rocket Baseline:** $\epsilon = A_{e} / A_{t} = 6.2, A_{t} = 1.81 \text{ in}^{2}$ $h = 20 \text{ Kft}, p_0 = 6.48 \text{ psi}$ 220 $(p_c)_{boost} = 1769 \text{ psi}, (I_{SP})_{boost} = 257 \text{ sec}$ 10 15 20 0 5 $(T)_{boost} = (32.2 / 5200) (1769) (1.81) (257) = 5096 lb$ **Nozzle Expansion Ratio** $(p_c)_{sustain} = 301 \text{ psi}, (I_{SP})_{sustain} = 239 \text{ sec}$ h = SL, pc = 300 psi-- h = SL, pc = 1000 psi $(T)_{\text{boost}} = (32.2 / 5200) (301) (1.81) (239) = 807 \text{ lb}$ h = SL, pc = 3000 psi — - - h = 100K ft, pc > 300 psi

Cruise Range Is Driven By L/D, I_{sp}, Velocity, and Propellant or Fuel Weight Fraction


R = (L / D) I_{sp} V In [W_L / ($W_L - W_P$)], Breguet Range Equation

	Typical Value for 2,000 lb Precision Strike Missile				
Parameter	Subsonic Turbojet Missile	Liquid Fuel Ramjet Missile	Hydrocarbon Fuel Scramjet Missile	Solid Rocket	
L / D, Lift / Drag	10	5	3	5	
I _{sp} , Specific Impulse	3,000 sec	1,300 sec	1,000 sec	250 sec	
V _{AVG} , Average Velocity	1,000 ft / sec	3,500 ft / sec	6,000 ft / sec	3,000 ft / sec	
W _P / W _L , Cruise Propellant or Fuel Weight / Launch Weight	0.3	0.2	0.1	0.4	
R, Cruise Range	1,800 nm	830 nm	310 nm	250 nm	
Note: Ramjet and Scramjet missiles booster propellant for Mach 2.5 to 4 take-over speed not included in W _P for cruise. for cruise. Rockets require thrust magnitude control (e.g., pintle, pulse, or gel motor) for effective cruise. Max range for a rocket is usually a semi-ballistic flight profile, instead of cruise flight.					


Slurry Fuel and Efficient Packaging Provide Extended Range Ramjet


Flight Trajectory Shaping Provides Extended Range

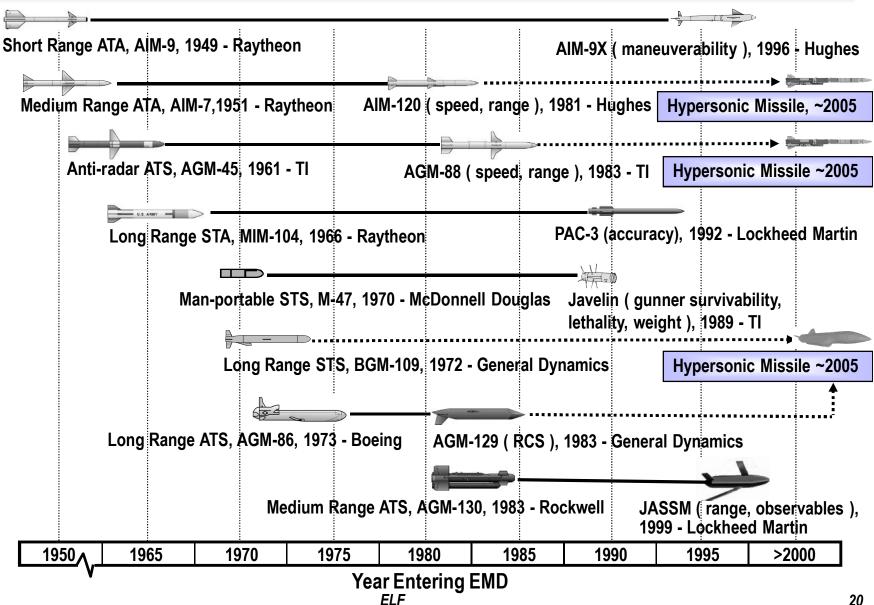
Rocket Baseline Missile Range Driven by I_{SP}, Propellant Weight, Drag, and Static Margin

Ramjet Baseline Range Is Driven by I_{SP}, Fuel Weight, Thrust, and Zero-Lift Drag Coefficient

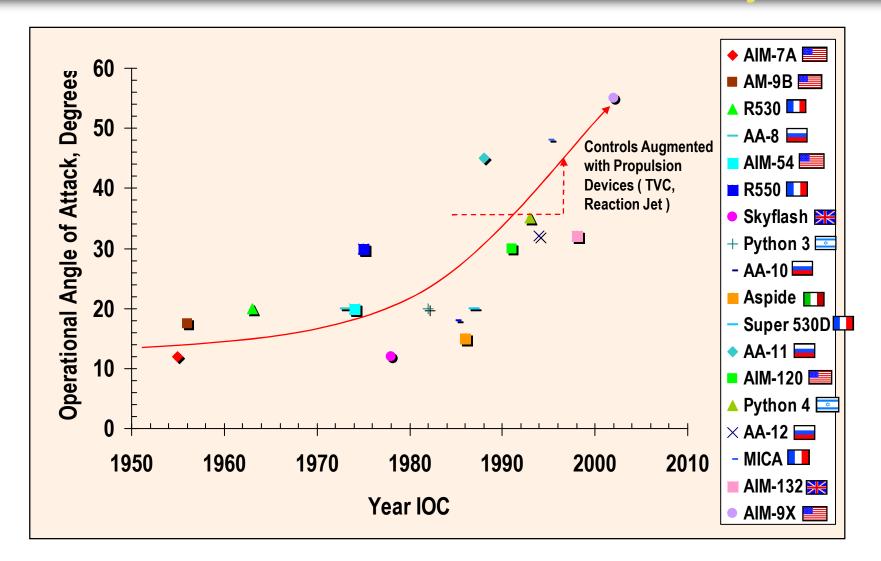
Ramjet Baseline Flight Range Uncertainty Is +/- 7%, 1 σ

Parameter	Baseline Value at Mach 3.0 / 60k ft	Uncertainty in Parameter	ΔR / R due to Uncertainty
1. Inert Weight	1205 lb	+/- 2%, 1σ	+/- 0.8%, 1σ
2. Ramjet Fuel Weight	476 lb	+/- 1%, 1σ	+/- 0.9%, 1σ
3. Zero-Lift Drag Coefficient	0.17	+/- 5%, 1σ	+/- 4%, 1 o
4. Lift Curve Slope Coefficient	0.13 / deg	+/- 3%, 1σ	+/- 1%, 1 o
5. Cruise Thrust (ϕ = 0.39)	458 lb	+/- 5%, 1σ	+/- 2%, 1 o
6. Specific Impulse	1040 sec	+/- 5%, 1σ	+/- 5%, 1 o

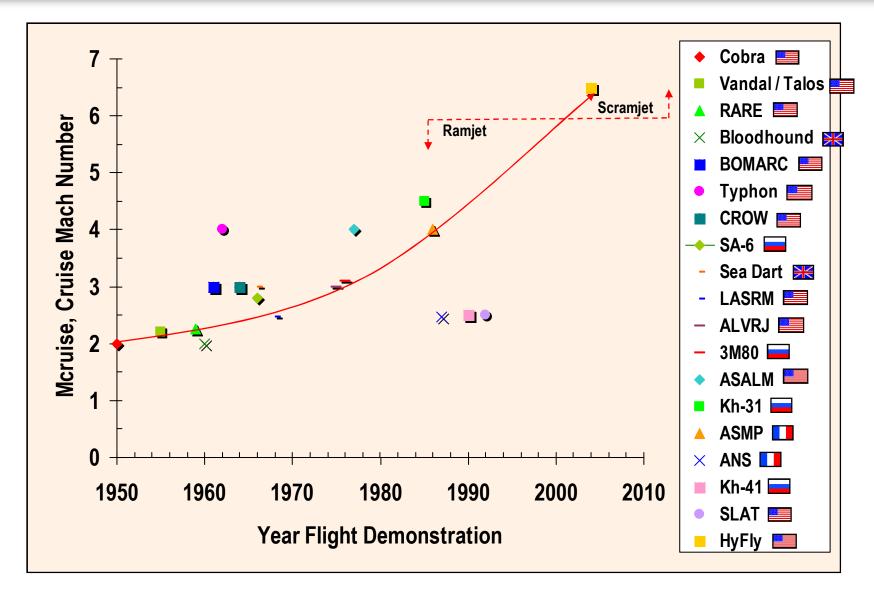
• Level of Maturity of Ramjet Baseline Based on Flight Demo of Prototype and Subsystem Tests

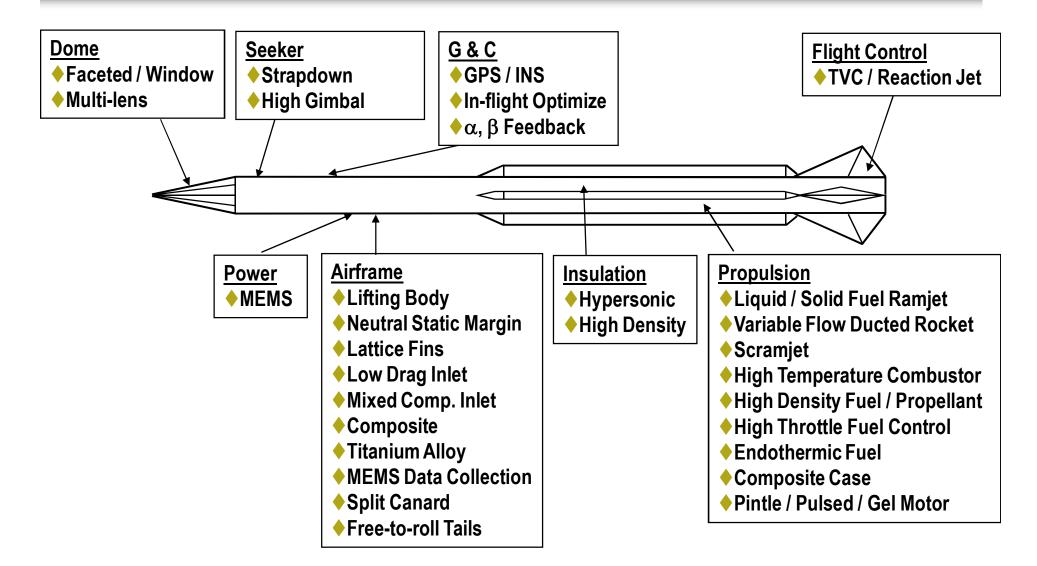

- Wind tunnel tests
- Direct connect, freejet, and booster firing propulsion tests
- Structure test
- Hardware-in-loop simulation
- Total Flight Range Uncertainty at Mach 3.0 / 60K ft Flyout

 $\Delta R / R = [(\Delta R / R)_{1}^{2} + (\Delta R / R)_{2}^{2} + (\Delta R / R)_{3}^{2} + (\Delta R / R)_{4}^{2} + (\Delta R / R)_{5}^{2} + (\Delta R / R)_{6}^{2}]^{1/2} = +/-6.9\%, 1\sigma$

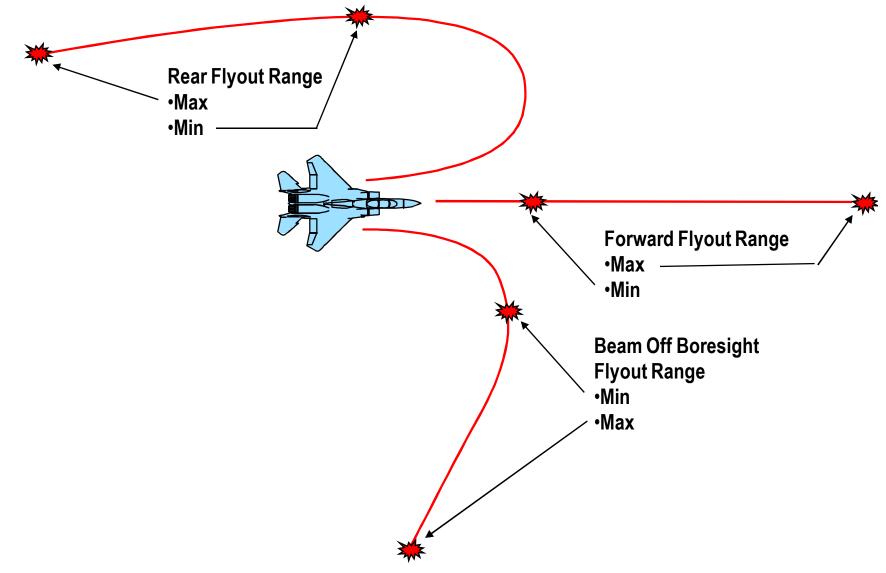

9/10/2009

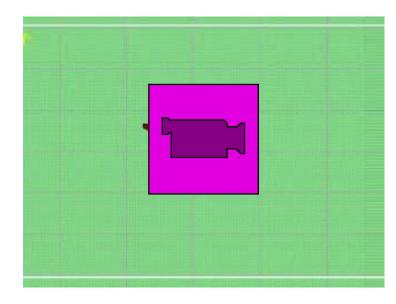
♦R = 445 nm +/- 31 nm, 1σ


US Tactical Missile Follow-On Programs Provide

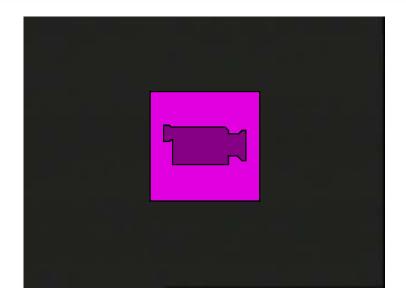

Example of Missile Technology State-of-the-Art Advancement: Missile Maneuverability

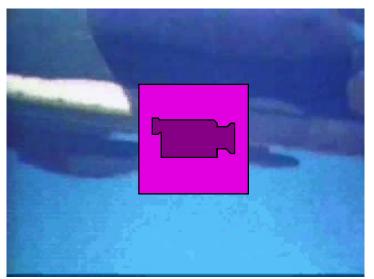
Example of Missile Technology State-of-the-Art Advancement: Supersonic Air Breathing Missiles


New Technologies That Enhance Tactical Missile Performance

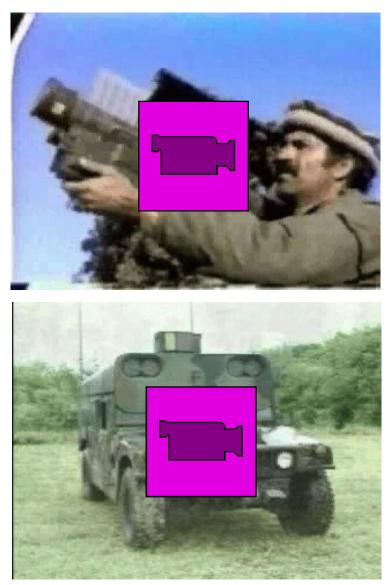


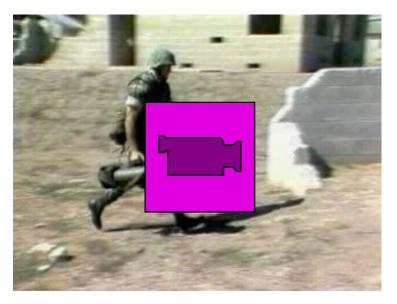

- Parameters and Technologies That Drive Missile Flight Performance
- Missile Flight Performance Prediction
- Examples of Maximizing Missile Flight Performance (Workshop)
- Summary

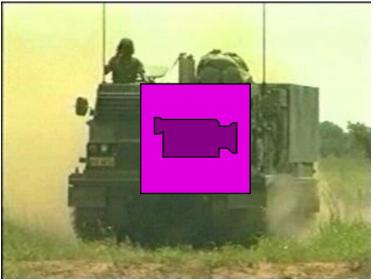

Flight Envelope Should Has Large Max Range, Small Min Range, and Large Off Boresight



Examples of Air Launched Missile Flight Performance







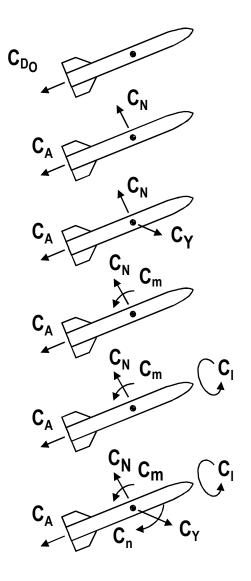
Examples of Surface Launched Missile Flight Performance

Conceptual Design Modeling Versus Preliminary Design Modeling

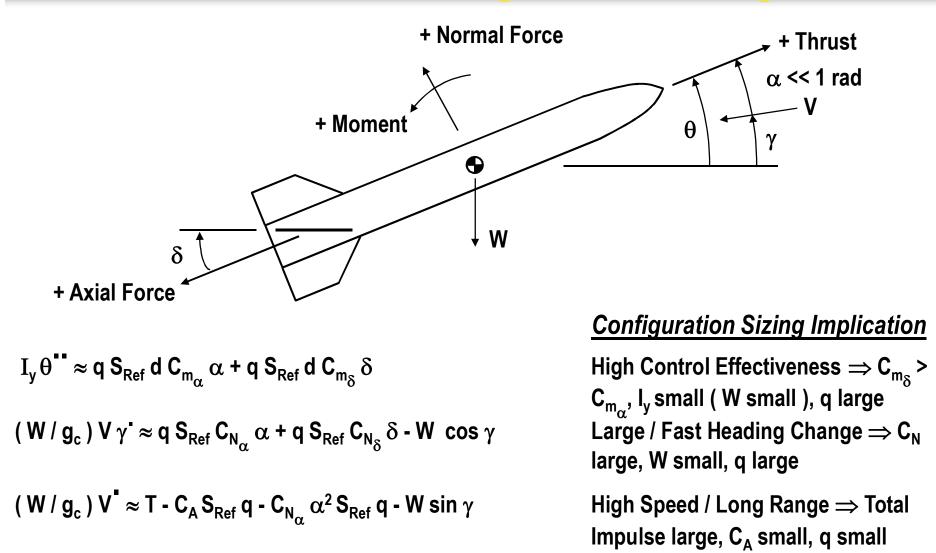
Conceptual Design Modeling

1 DOF [Axial force (C_{DO}), thrust, weight]

♦2 DOF [Normal force (C_N), axial force, thrust, weight]

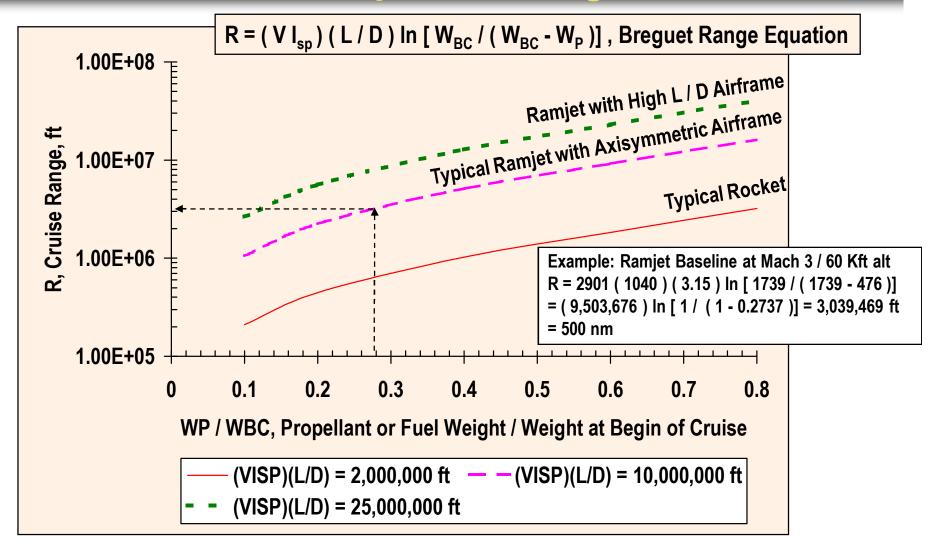

3 DOF point mass [3 forces (normal, axial, side), thrust, weight]

3 DOF pitch [2 forces (normal, axial), 1 moment (pitch), thrust, weight]

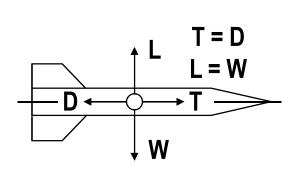

4 DOF [2 forces (normal, axial), 2 moments (pitch, roll), thrust, weight]

Preliminary Design Modeling

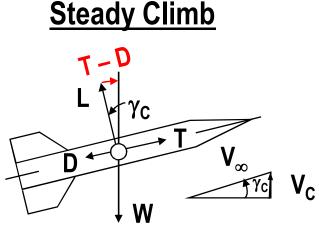
♦6 DOF [3 forces (normal, axial, side), 3 moments (pitch, roll, yaw), thrust, weight]



3 DOF Simplified Equations of Motion Show Drivers for Configuration Sizing

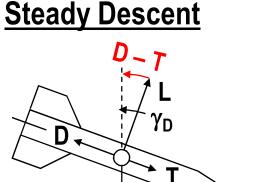

Note: Based on aerodynamic control

For Long Range Cruise, Maximize V I_{sp}, L / D, And Fuel or Propellant Weight Fraction



Note: R = cruise range, V = cruise velocity, I_{SP} = specific impulse, L = lift, D = drag, W_{BC} = weight at begin of cruise, W_P = weight of propellant or fuel

Efficient Steady Flight Is Enhanced by High L / D and Light Weight


Steady Level Flight

SIN $\gamma_c = (T - D) / W = V_c / V_{\infty}$

 $R_c = \Delta h / \tan \gamma_c = \Delta h (L / D)$

 $V_{c} = (T - D) V_{\infty} / W$

V_D

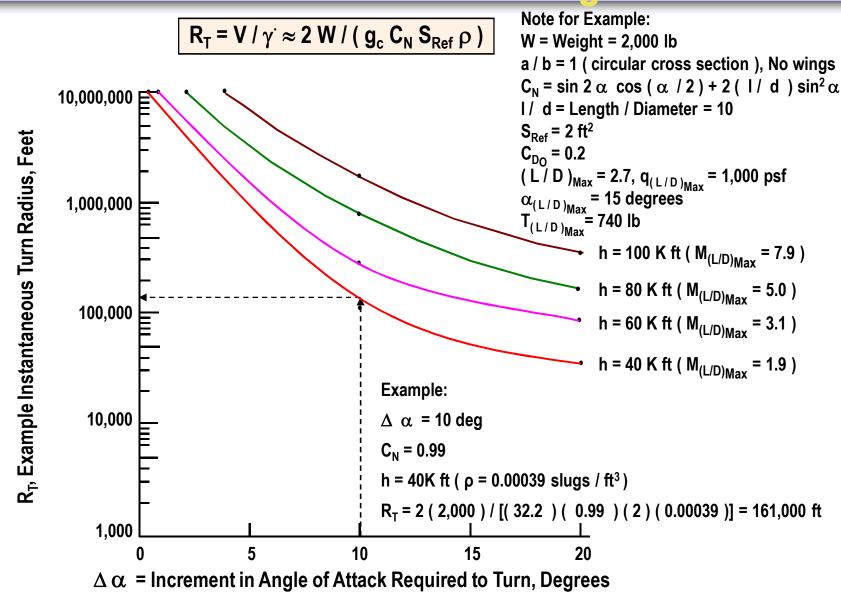
₩↓

SIN γ_D = (D – T) / W = V_D / V_∞

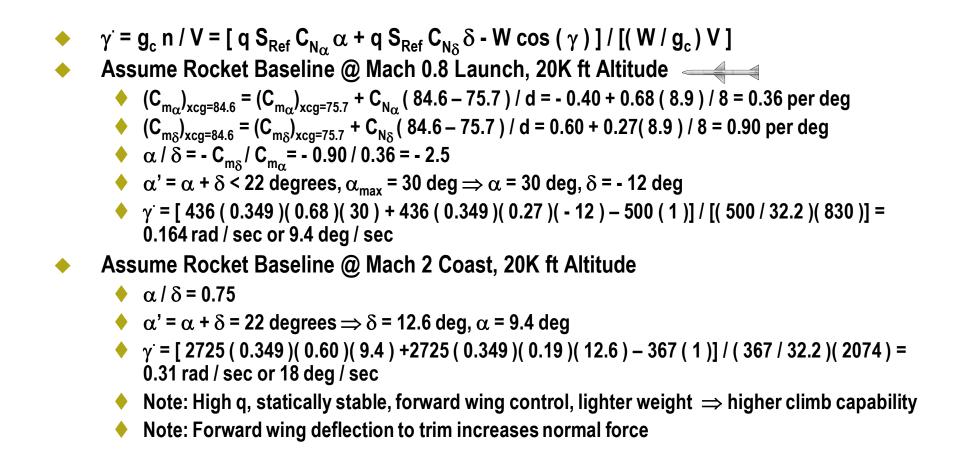
 $R_{D} = \Delta h / \tan \gamma_{D} = \Delta h (L / D)$

T = W / (L / D)

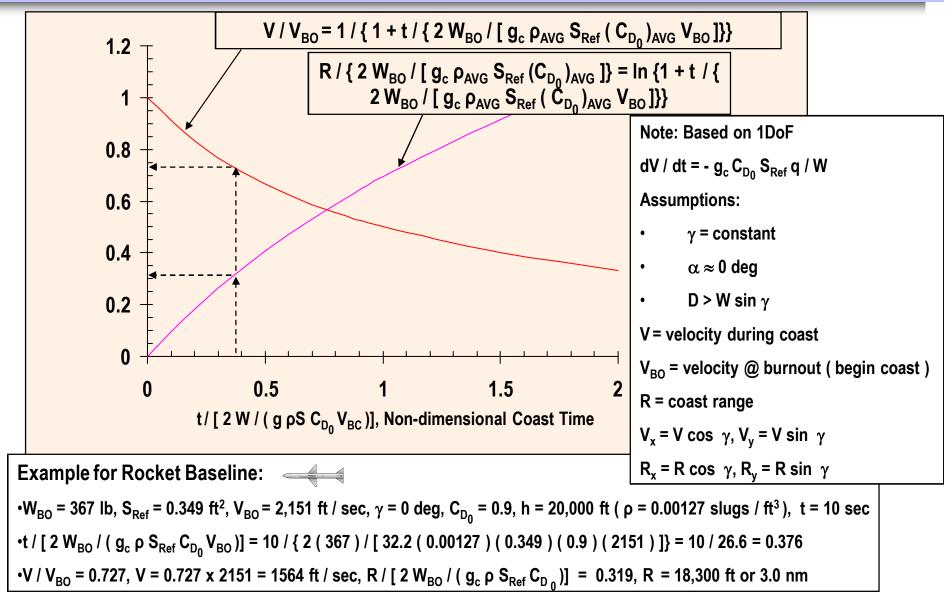
Note:

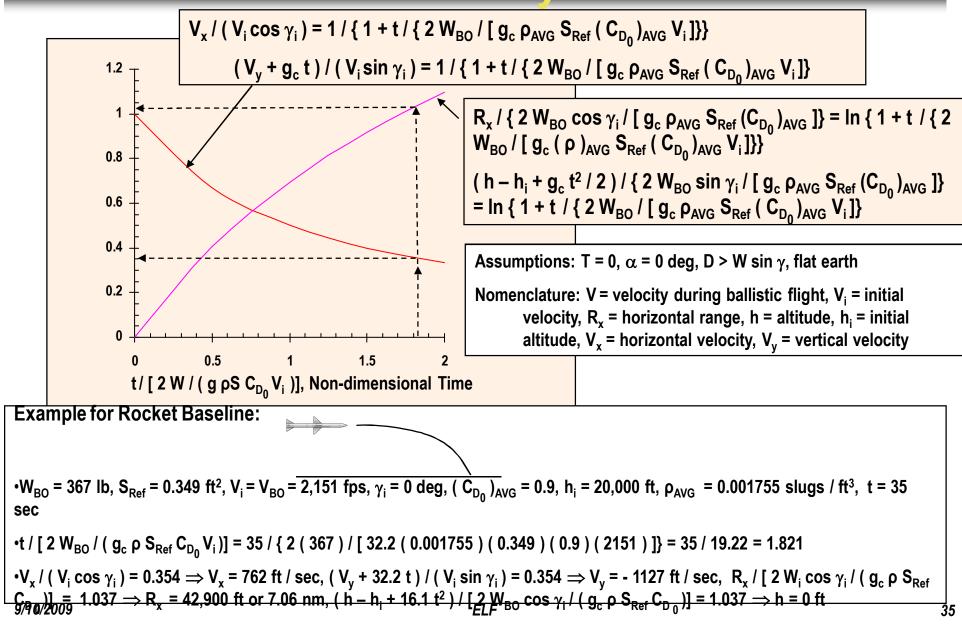

- Small Angle of Attack
- Equilibrium Flight
- V_c = Velocity of Climb
- V_D = Velocity of Descent
- γ_c = Flight Path Angle During Climb
- γ_D = Flight Path Angle During Descent
- V_{∞} = Total Velocity
- Δh = Incremental Altitude
- R_c = Horizontal Range in Steady Climb
- R_D = Horizontal Range in Steady Dive (Glide)

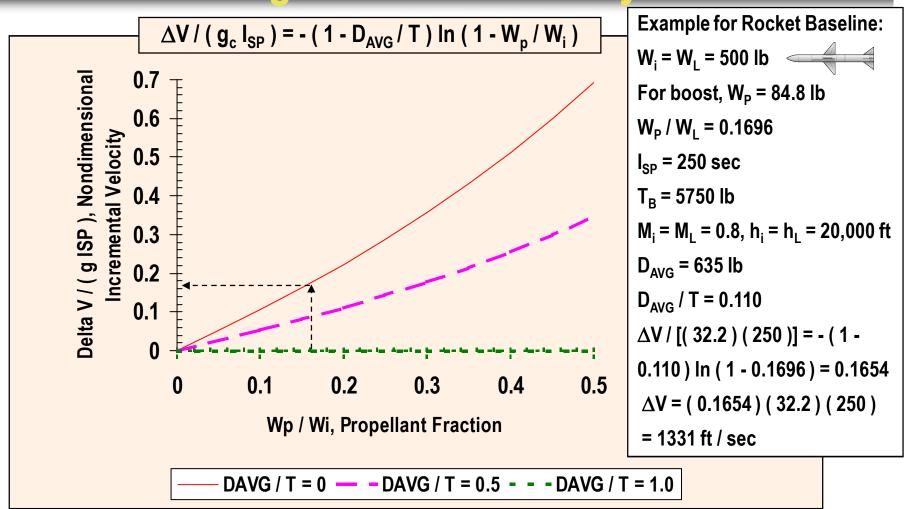
Reference: Chin, S.S., "Missile Configuration Design," McGraw Hill Book Company, New York, 1961


 $V_{\rm D} = (D - T) V_{\infty} / W$

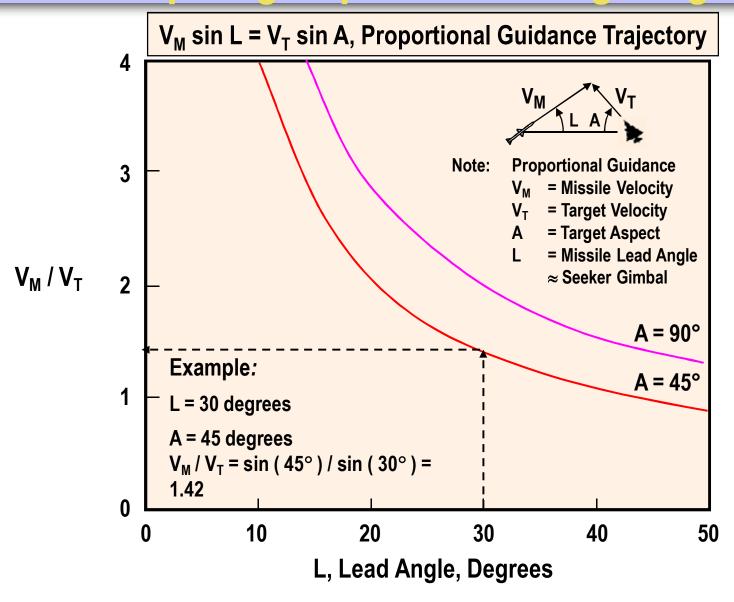
) ELF / ₀₀

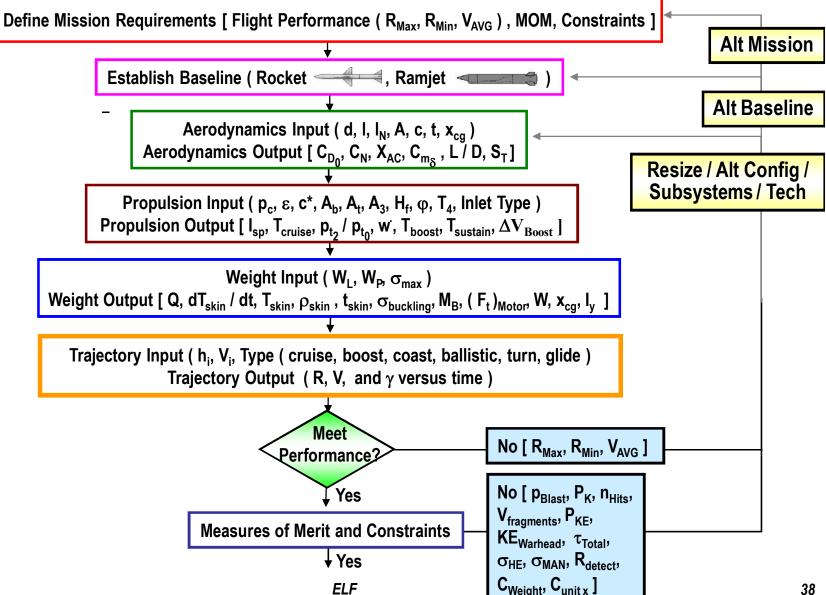

Small Turn Radius Requires High Angle of Attack and Low Altitude Flight


Turn Rate Performance Requires High Control Effectiveness


For Long Range Coast, Maximize Initial Velocity

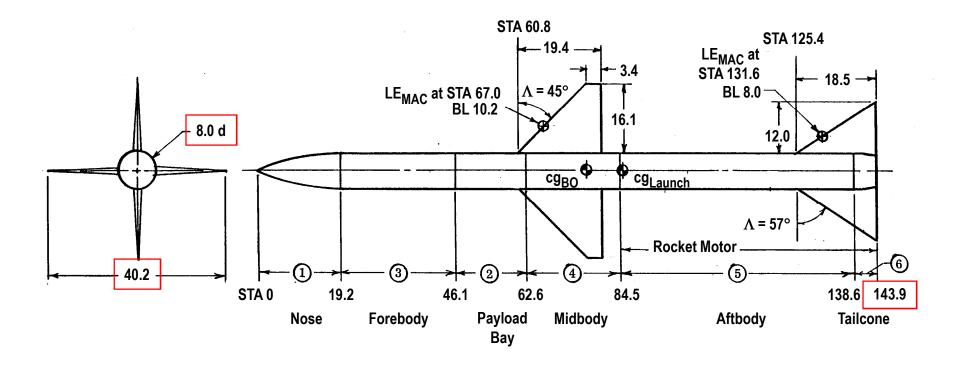
For Long Range Ballistic Flight, Maximize Initial Velocity


High Propellant Weight and High Thrust Provide High Burnout Velocity


Note: 1 DOF Equation of Motion with $\alpha \approx 0 \text{ deg}$, $\gamma = \text{constant}$, and $T > W \sin \gamma$, $W_i = \text{initial weight}$, $W_p = \text{propellant}$ weight, $I_{SP} = \text{specific impulse}$, T = thrust, $M_i = \text{initial Mach number}$, $h_i = \text{initial altitude}$, $D_{AVG} = \text{average drag}$, $\Delta V = \text{incremental velocity}$, $g_c = \text{gravitation constant}$, $V_x = V \cos \gamma$, $V_y = V \sin \gamma$, $R_x = R \cos \gamma$, $R_y = R \sin \gamma$

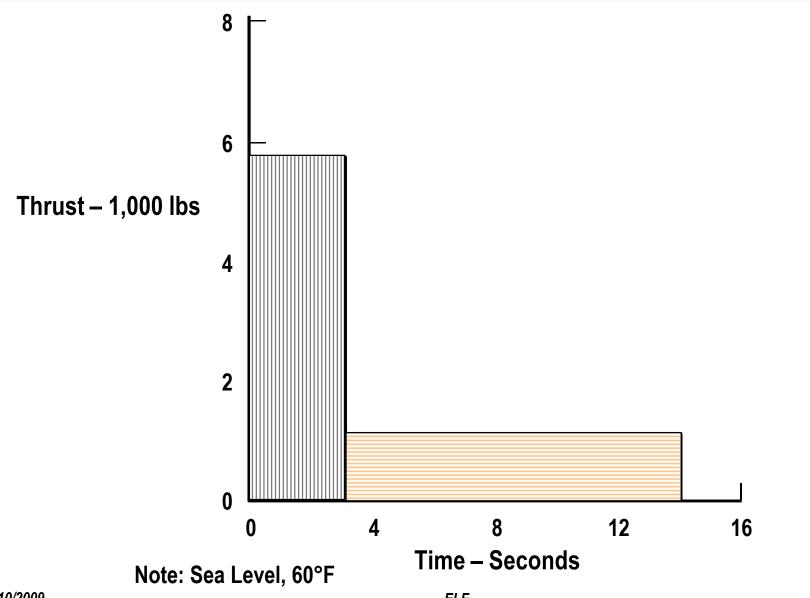
Note: R = (V_i + Δ V / 2) t_B, where R = boost range, V_i = initial velocity, t_B = boost time 9/10/2009

High Missile Velocity and Lead Are Required to Intercept High Speed Crossing Targets

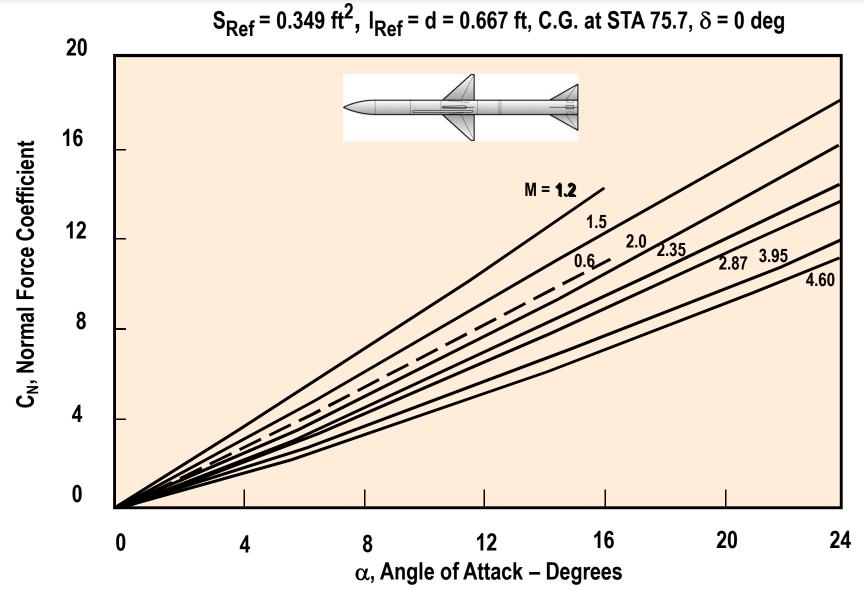

Example of Spreadsheet Based Conceptual

- Examples of Parameters and Technologies
 That Drive Missile Flight Performance
- Missile Flight Performance Prediction
- Examples of Maximizing Missile Flight Performance (Workshop)
- Summary

Rocket Baseline Missile Configuration

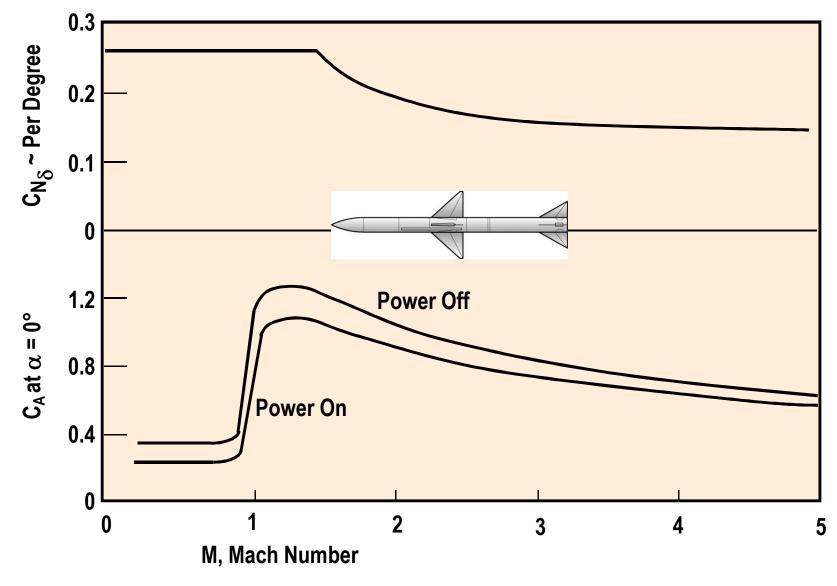

Note: Dimensions in inches

Source: Bithell, R.A. and Stoner, R.C., "Rapid Approach for Missile Synthesis, Vol. 1, Rocket Synthesis Handbook," AFWAL-TR-81-3022, Vol. 1, March 1982.

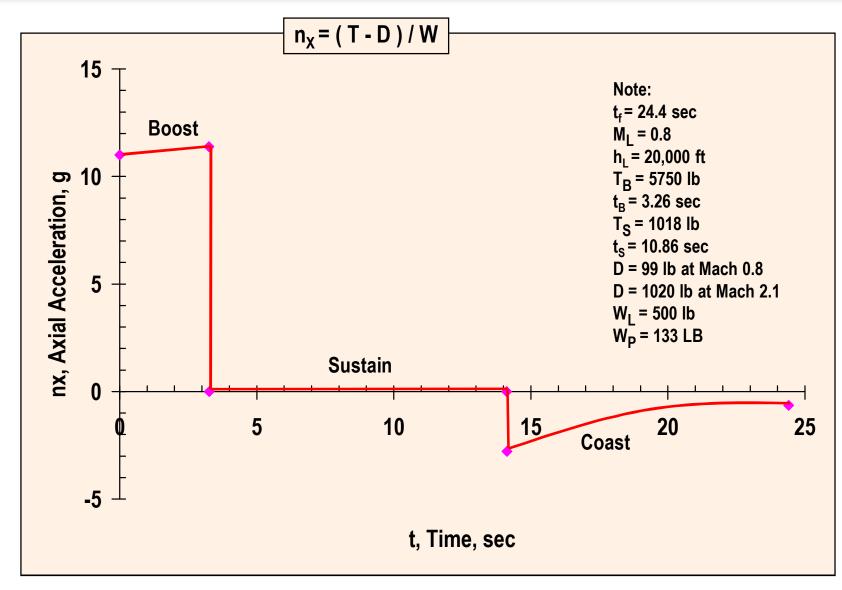

Rocket Baseline Missile Propellant Weight Is 27% of the Launch Weight

Component	Weight, Ibs.	C.G. STA, In.
1 Nose (Radome)	4.1	12.0
3 Forebody structure	12.4	30.5
Guidance	46.6	32.6
2 Payload Bay Structure	7.6	54.3
Warhead	77.7	54.3
4 Midbody Structure	10.2	73.5
Control Actuation System	61.0	75.5
5 Aftbody Structure	0.0	-
Rocket Motor Case	47.3	107.5
Insulation	23.0	117.2
6 Tailcone Structure	6.5	141.2
Nozzle	5.8	141.2
Fixed Surfaces	26.2	137.8
Movable Surfaces	38.6	75.5
Burnout Total	367.0	76.2
Propellant	133.0	107.8
Launch Total	500.0	84.6

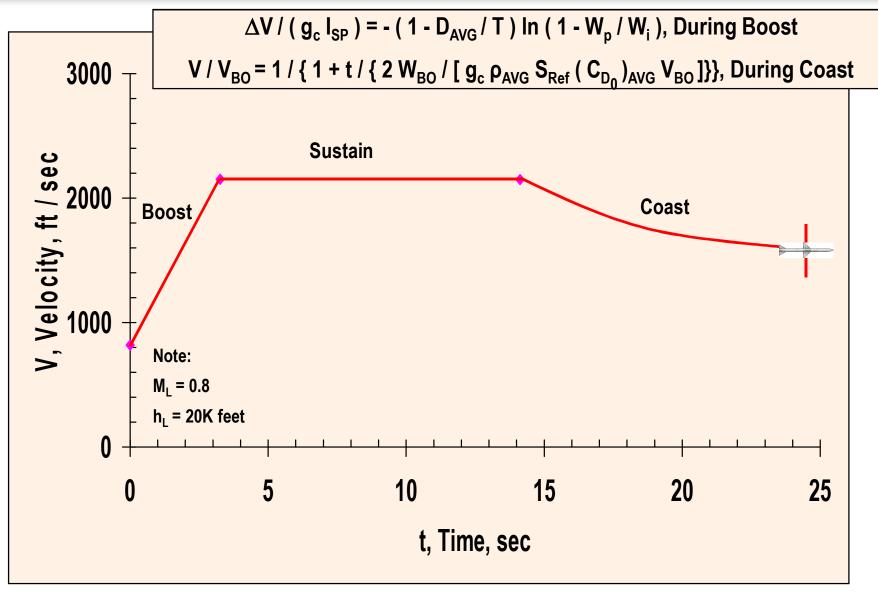
Rocket Baseline Missile Has Boost-Sustain Thrust - Time History

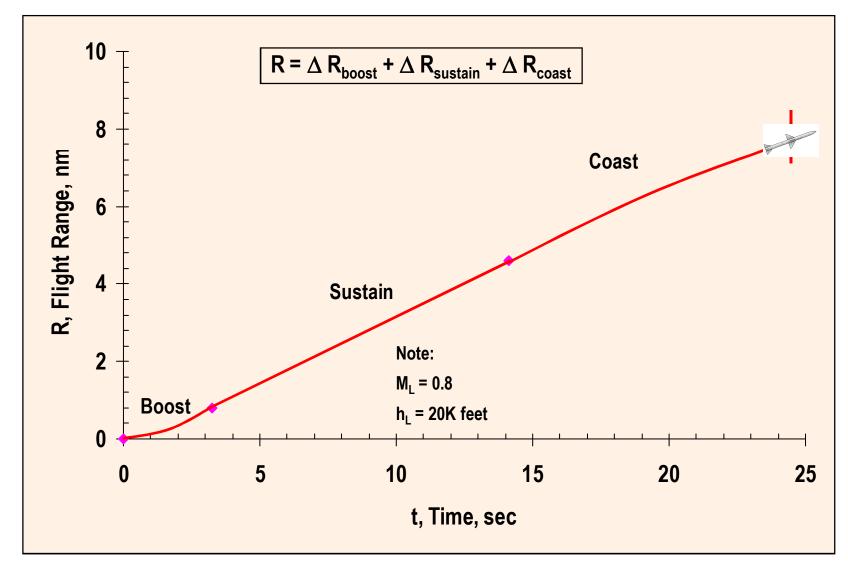


Rocket Baseline Missile Has Higher Maneuverability at High Angle of Attack



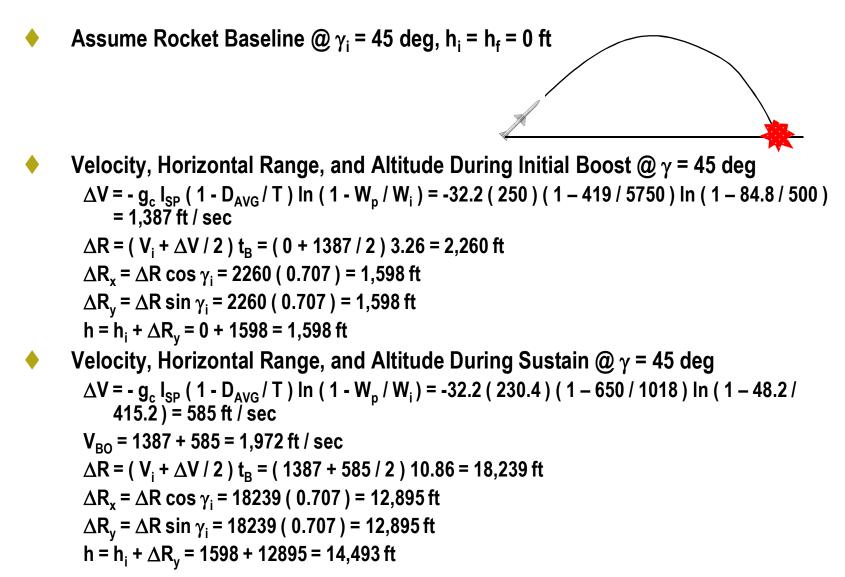
9/10/2009


Rocket Baseline Missile Control Effectiveness and Drag Are Driven by Mach Number


Rocket Baseline Has High Boost Acceleration

Rocket Baseline Missile Has Nearly Constant Velocity During Sustain

Rocket Baseline Missile Maximum Range Is About Eight Nautical Miles


Rocket Baseline Missile Has About 30 G Maneuverability

$$(n_{z}) = (n_{z})_{Body} + (n_{z})_{Wing} + (n_{z})_{Taill}$$

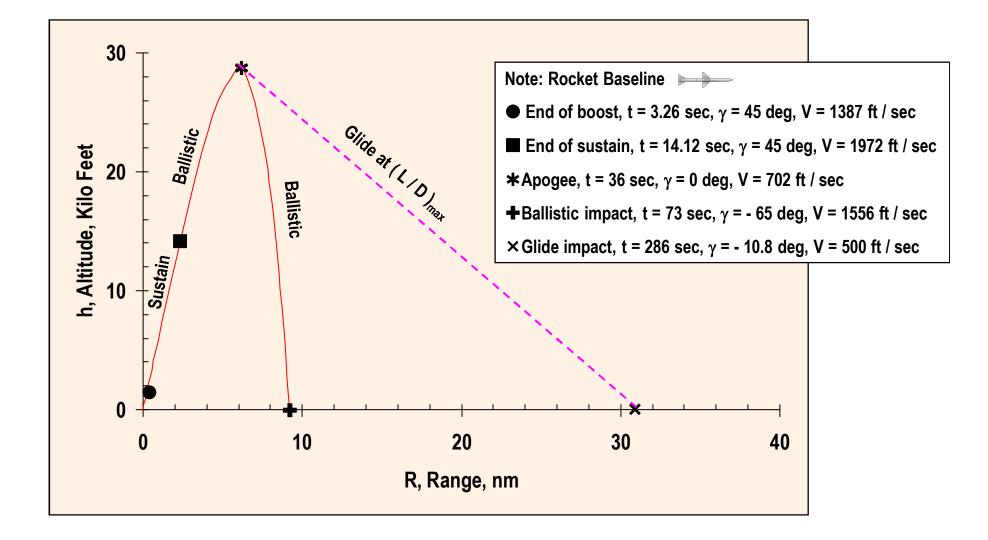
Rocket Baseline @
 •Mach 2
 •20,000 ft altitude
 •367 lb weight (burnout)

Compute
 α_{Wing} = α'_{Max} = (α + δ)_{Max} = 22 deg for rocket baseline
 α = 0.75δ, α_{Body} = α_{Tail} = 9.4 deg
 (n_Z)_{Body} = q S_{Ref} (C_N)_{Body} / W = 2725 (0.35) (1.1) / 367 = 2.9 g (from body)
 (n_Z)_{Wing} = q S_{Wing} [(C_N)_{Wing} (S_{Ref}/S_{Wing})] / W = 2725 (2.55) (1.08) / 367 = 20.4 g (from wing)
 (n_Z)_{Tail} = q S_{Tail} [(C_N)_{Tail} (S_{Ref}/S_{Tail})] / W = 2725 (1.54) (0.50) / 367 = 5.7 g (from tail)

Example of Boost Climb - Ballistic Trajectory

Example of Boost Climb - Ballistic Trajectory

- Velocity, Horizontal Range, and Altitude During Ballistic Flight $h_f = h_i = 0 \text{ ft} \implies t_{\text{ballistic}} = 59 \text{ sec}$)
 - $\begin{array}{l} V_x = V_i \cos \gamma_i \, / \, \{ \, 1 + t \, / \, \{ \, 2 \, W_{BO} \, / \, [\, g_c \, \rho_{AVG} \, S_{Ref} \, (\, C_{D_0})_{AVG} \, V_{BO} \,] \} \} = 1972 \, (\, 0.707 \,) \, / \, \{ \, 1 + 59 \, / \, \{ \, 2 \, (\, 367 \,) \, / \, [\, 32.2 \, (\, 0.001496 \,) \, (\, 0.349 \,) \, (\, 0.95 \,) \, (\, 1972 \,)] \} \} = 395 \, ft \, / \, sec \end{array}$
 - $\begin{array}{l} V_y = V_i \sin \gamma_i \, / \, \{ \, 1 + t \, / \, \{ \, 2 \, W_{BO} \, / \, [\, g_c \, \rho_{AVG} \, S_{Ref} \, (\, C_{D_0})_{AVG} \, V_{BO} \,] \} \, \, 32.2 \, t = 1972 \, (\, 0.707 \,) \, / \, \{ \, 1 + 59 \, / \, \{ \, 2 \, (\, 367 \,) \, / \, [\, 32.2 \, (\, 0.001496 \,) \, (\, 0.349 \,) \, (\, 0.95 \,) \, (\, 1972 \,)] \} \} \, \, 32.2 \, (\, 59 \,) = \, 1,505 \, \text{ft} \, / \, \text{sec} \end{array}$
 - $\begin{array}{l} \mathsf{R}_{\mathsf{x}} = \{ \ 2 \ \mathsf{W}_{\mathsf{BO}} \ \cos \gamma_{\mathsf{i}} \, / \, [\ \mathsf{g}_{\mathsf{c}} \ \rho_{\mathsf{AVG}} \ \mathsf{S}_{\mathsf{Ref}} \ (\mathsf{C}_{\mathsf{D}_0})_{\mathsf{AVG}} \] \} \ \mathsf{In} \ \{ \ 1 + \mathsf{t} \ / \ \{ \ 2 \ \mathsf{W}_{\mathsf{BO}} \ / \ [\ \mathsf{g}_{\mathsf{c}} \ \rho_{\mathsf{AVG}} \ \mathsf{S}_{\mathsf{Ref}} \ (\ \mathsf{C}_{\mathsf{D}_0})_{\mathsf{AVG}} \ \mathsf{V}_{\mathsf{BO}} \] \} \} = \{ \ 2 \ (\ 367 \) \ (\ 0.707 \) \ / \ [\ 32.2 \ (\ 0.001496 \) \ (\ 0.349 \) \ (\ 0.95 \)] \} \ \mathsf{In} \ \{ \ 1 + 59 \ / \ \{ \ 2 \ (\ 367 \) \ / \ [\ 32.2 \ (\ 0.001496 \) \ (\ 0.349 \) \ (\ 0.95 \)] \} \ \mathsf{In} \ \{ \ 1 + 59 \ / \ \{ \ 2 \ (\ 367 \) \ / \ [\ 32.2 \ (\ 0.001496 \) \ (\ 0.349 \) \ (\ 0.349 \) \ (\ 0.95 \)] \} \ \mathsf{In} \ \{ \ 1 + 59 \ / \ \{ \ 2 \ (\ 367 \) \ / \ [\ 32.2 \ (\ 0.001496 \) \ (\ 0.349 \) \ (\ 0.349 \) \ (\ 0.95 \)] \} \ \mathsf{In} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{In} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{In} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{Nef} \ \mathsf{Nef} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{Nef} \ \mathsf{Nef} \ \mathsf{S}_{\mathsf{Nef}} \ \mathsf{Nef} \ \mathsf{Nef}$
 - $$\begin{split} h &= h_i + \{ 2 \ W_{BO} \sin \gamma_i \, / \, [\ g_c \ \rho_{AVG} \ S_{Ref} \ (\ C_{D_0})_{AVG} \] \} \ln \{ 1 + t \ / \ \{ 2 \ W_{BO} \ / \ [\ g_c \ \rho_{AVG} \ S_{Ref} \ (\ C_{D_0})_{AVG} \ V_{BO} \] \} 16.1 \ t^2 = 14493 + \{ 2 \ (\ 367 \) \ (\ 0.707 \) \ / \ [\ 32.2 \ (\ 0.001496 \) \ (\ 0.349 \) \ (\ 0.95 \) \] \} \ln \{ 1 + 59 \ / \ \{ 2 \ (\ 367 \) \ / \ (\ 32.2 \ (\ 0.001496 \) \ (\ 0.349 \) \ (\ 0.95 \) \] \} + 16.1 \ (\ 59 \)^2 = 0 \ ft \end{split}$$
- Total Time of Flight and Horizontal Range


 $t = \sum \Delta t = \Delta t_{boost} + \Delta t_{sustain} + \Delta t_{ballistic} = 3.26 + 10.86 + 59 = 73 \text{ sec}$ $R_x = \sum \Delta R_x = \Delta R_{x,boost} + \Delta R_{x,sustain} + \Delta R_{x,ballistic} = 1598 + 12895 + 40991 = 55,894 \text{ ft} = 9.2 \text{ nm}$

Boost Climb – Ballistic – Glide Trajectory Provides Extended Range

- **EXAMPLE** Rocket Baseline @ γ_i = 45 deg, $h_i = h_f = 0$ ft
- From Previous Example, the Boost Climb Ballistic Conditions at Apogee are:
 - ♦ t = 36 sec

 - V = 702 ft / sec
 - ♦ h = 28,994 ft
 - $\Delta R_x = 36,786 \, \text{ft}$
 - ♦ q = 227 psf
 - ♦ M = 0.7
 - (L/D)_{max} = 5.22
 - α_{(L/D)max} = 5.5 deg
- Incremental Horizontal Range During the (L / D)_{max} Glide from Apogee to the Ground is given by
 - $\Delta R_x = (L / D) \Delta h = 5.22 (28994) = 151,349 \text{ ft}$
- Total Horizontal Range for a Boost Climb Ballistic Glide Trajectory is
 - $R_x = \Sigma \Delta R_x = \Delta R_{x,BoostClimb-Ballistic} + \Delta R_{x,Glide} = 36786 + 151349 = 188,135 \text{ ft} = 31.0 \text{ nm}$

Glide at (L / D)_{max} Provides Extended Range

Soda Straw Rocket Design, Build, and Fly

- Objective Hands-on Learning of Rocket Physics Based on
 - Design
 - Build
 - Fly
- Furnished Property
 - 1 Launch System
 - 1 Target
 - 1 Weight Scale
- Furnished Material
 - 1 Soda Straw: ¹/₄ in Inside Diameter by 11 in Length
 - 1 Strip Tabbing: ¹/₂ in by 6 in
 - 1 Tape Dispenser
 - 1 Wood Dowel: ¼ in Diameter by 1 in Length

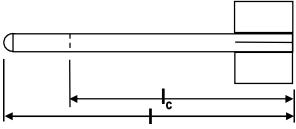
Soda Straw Rocket (cont)

- Design Soda Straw Rocket
 - Compatible with Furnished Property Launch System
 - Launch tube outside diameter: ¼ in
 - Launch tube length: 6 in
 - Launch static gauge pressure: up to 30 psi
 - Design Body and Tails for
 - Maximum flight range
 - Accurate and stable flight
 - Calculate Aerodynamic Drag Coefficient
 - Skin friction drag
 - Base drag
 - Calculate Thrust and Thrust Duration
 - Measure Weight
 - ± 0.1 gram accuracy
 - Predict Flight Range and Altitude for Proscribed
 - Launch pressure
 - Elevation angle

Soda Straw Rocket (cont)

Build - Soda Straw Rocket Using Either

- Furnished Material
- Or Can Use Own Material


Fly - Soda Straw Rocket

- Proscribed Target Location, Launch Location, Launch Pressure, and Launch Angle
- Compare Flight Test Results for Alternative Concepts
 - Highest vertical location of impact
 - Smallest horizontal dispersal from impact aim point
- Discuss Reasons for Performance of Alternative Concepts

Example Baseline Configuration Geometry, Weight, and Balance

Example Baseline Configuration

- Diameter = d = 1/4 in = 0.0208 ft
- Outside Length = I = 5 in = 0.417 ft

- Inside Cavity Length Available for Launch Tube = I_c = 4 in = 0.333 ft
- Hemispherical Nose
- Reference Area = $S_{Ref} = (\pi / 4) d^2 = 0.0491 in^2 = 0.000341 ft^2$
- 4 Tail Panels (Cruciform Tails, $n_T = 2$)
 - Each tail panel ½ in by 1 in
 - Mean aerodynamic chord = c_{mac} = 1 in = 0.0833 ft
 - Exposed area of 2 tail panels = $S_T = 1$ in² = 0.00694 ft²
 - Exposed aspect ratio of 2 tail panels = $A = b^2 / S_T = (1)^2 / (1) = 1.0$
- Example Baseline Weight and Balance
 - W = 1.9 gram = 0.0042 lb
 - ♦ X_{cg} / I = 0.55

Example Baseline Boost Performance

- During Boost, Thrust (T) Provided by Pressurized Launch Tube
 - $T = (p p_0) A = p_{gauge} (1 e^{-t/\tau}) A$
 - A = S_{Ref} = 0.0491 in², τ = Rise Time to Open Valve
 - Assume $p_{gauge} = 20 \text{ psi}, \tau = 0.2 \text{ sec}$
 - $T = 20 (1 e^{-t/0.2}) (0.0491) = 0.982 (1 e^{-5.00 t})$
 - Actual Thrust Lower (Pressure Loss, Boundary Layer, Launch Tube Friction)
- Acceleration (a), Velocity (V), and Distance (s) During Boost
 - $a \approx 32.2 \text{ T} / \text{W} = 32.2 (0.982) (1 e^{-5.00 \text{ t}}) / 0.0042 = 7528.667 (1 e^{-5.00 \text{ t}})$
 - ♦ V = 7528.667 t + 1505.733 e ^{-5.00 t} 1505.733
 - $s = 3764.333 t^2 301.147 e^{-5.00 t} 1505.733 t + 301.147$
- End of Boost Conditions
 - $s = I_c = 0.333 \text{ ft} \implies t = 0.0382 \text{ sec}$
 - ♦ V = 25.8 ft / sec
 - $q = \frac{1}{2} \rho V^2 = \frac{1}{2} (0.002378) (25.8)^2 = 0.791 \text{ psf}$
 - M = V / c = 25.8 / 1116 = 0.0231

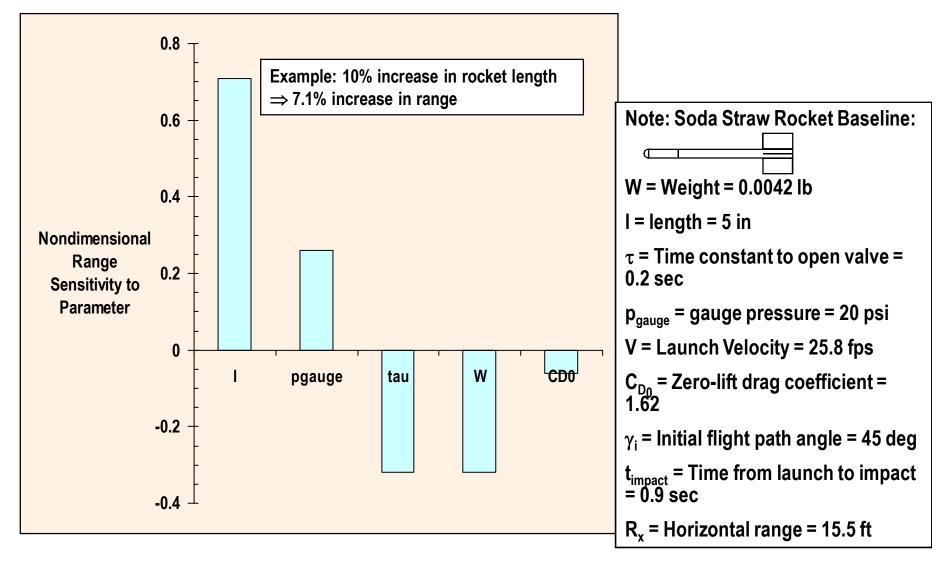
Example Baseline Drag Coefficient

- Total Drag Coefficient $C_{D_0} = (C_{D_0})_{Body} + (C_{D_0})_{Tail}$
 - During Coast, C_{D0} = (C_{D0})_{Body,Friction} + (C_{D0})_{Base,Coast} + (C_{D0})_{Tail,Friction} = 0.053 (I / d) [M / (q I)]^{0.2} + 0.12 + n_T { 0.0133 [M / (q c_{mac})]^{0.2} } (2 S_T / S_{Ref})
 - $C_{D_0} = 0.053 (20) \{ 0.0231 / [(0.791)(0.417)] \}^{0.2} + 0.12 + 2 \{ 0.0133 \{ 0.0231 / [(0.791)(0.0833)] \}^{0.2} \} [2(0.00694) / 0.000341)] = 0.62 + 0.12 + 0.88 = 1.62$
- Above Drag Coefficient Not Exact
 - Based on Assumption of Turbulent Boundary Layer
 - ♦ Soda Straw Rocket Is Small Size and Low Velocity ⇒ Laminar Boundary Layer

Example Ballistic Flight Performance

Horizontal Range Equation

 $\begin{array}{l} \mathsf{R}_{\mathsf{x}} = \{ \; 2 \; \mathsf{W} \; \cos \gamma_{\mathsf{i}} \, / \left[\; \mathsf{g}_{\mathsf{c}} \; \rho \; \mathsf{S}_{\mathsf{Ref}} \; \mathsf{C}_{\mathsf{D}_0} \; \right] \} \; \mathsf{ln} \; \{ \; 1 + t \; / \; \{ \; 2 \; \mathsf{W} \, / \; \left[\; \mathsf{g}_{\mathsf{c}} \; \rho \; \mathsf{S}_{\mathsf{Ref}} \; \mathsf{C}_{\mathsf{D}_0} \; \mathsf{V}_{\mathsf{i}} \right] \} = \{ \; 2 \; (\; 0.0042 \;) \; \cos \gamma_{\mathsf{i}} \, / \; \left[\; 32.2 \; (\; 0.002378 \;) \; (\; 0.000341 \;) \; (\; 1.62 \;) \right] \} \; \mathsf{ln} \; \{ \; 1 + t \, / \; \{ \; 2 \; (\; 0.0042 \;) \, / \; \left[\; 32.2 \; (\; 0.002378 \;) \; (\; 0.000341 \;) \; (\; 1.62 \;) \; \left[\; 25.8 \; \right] \right] \} = 199 \; \cos \gamma_{\mathsf{i}} \; \mathsf{ln} \; (\; 1 + 0.130 \; t \;) \end{array}$


Height Equation

$$\begin{split} h &= \{ 2 \ W \ sin \ \gamma_i \ / \ [\ g_c \ \rho \ S_{Ref} \ C_{D_0} \] \} \ ln \ \{ 1 + t \ / \ \{ 2 \ W \ / \ [\ g_c \ \rho \ S_{Ref} \ C_{D_0} \ V_i \] \} + h_i - g_c \\ t^2 \ / \ 2 &= \{ 2 \ (\ 0.0042 \) \ sin \ \gamma_i \ / \ [\ 32.2 \ (\ 0.002378 \) \ (\ 0.000341 \) \ (\ 1.62 \) \} \ ln \ \{ 1 + t \ / \ \{ 2 \ (\ 0.0042 \) \ / \ [\ 32.2 \ (\ 0.002378 \) \ (\ 0.000341 \) \ (\ 1.62 \) \} \ ln \ \{ 1 + t \ / \ \{ 2 \ (\ 0.0042 \) \ / \ [\ 32.2 \ (\ 0.002378 \) \ (\ 0.000341 \) \ (\ 1.62 \) \] \} + h_i - \\ 32.2 \ t^2 \ / \ 2 &= 199 \ sin \ \gamma_i \ ln \ (\ 1 + 0.130 \ t \) + h_i - 32.2 \ t^2 \ / \ 2 \end{split}$$

Assume
$$\gamma_i$$
 = 45 deg, t = t_{impact} = 0.9 sec

• $h = 199 (0.707) \ln [1 + 0.130 (0.9)] + h_i - 32.2 (0.9)^2 / 2 = h_i + 2.5$

Soda Straw Rocket Range Driven by Length, Gauge Pressure, Valve Open Time , and Weight

- Examples of Parameters and Technologies
 That Drive Missile Flight Performance
- Missile Flight Performance Prediction
- Examples of Maximizing Missile Flight Performance (Workshop)
- Summary

Summary

- Flight Performance Analysis Activity in Missile Design and Analysis
 - Compute Range, Velocity, Time-to-Target, Off Boresight
 - Compare with Requirements and Data
- Maximizing Flight Performance Strongly Impacted by
 - Aerodynamics
 - Propulsion
 - Weight
 - Flight Trajectory
- Lecture Topics
 - Aerodynamics Parameters, Prediction and Technologies
 - Drag Coefficient
 - Normal Force Coefficient
 - Propulsion Parameters, Prediction, and Technologies
 - Thrust
 - Specific Impulse

Summary (cont)

- Lecture Topics (continued)
 - Flight Performance Parameters and Technologies
 - Cruise Range
 - High Density Fuel and Packaging
 - Flight Trajectory Shaping
 - Range Sensitivity to Driving Parameters
 - Missile Follow-on Programs
 - Examples of State-of-the-Art Advancements
 - Summary of New Technologies
 - Flight Performance Envelope
 - Videos of Flight Performance
 - Modeling of Degrees of Freedom
 - Equations of Motion and Flight Performance Drivers
 - Steady State Flight Relationships
 - Flight Performance Prediction
 - Steady Climb and Steady Dive Range Prediction
 - Cruise Prediction

Summary (cont)

- Lecture Topics (continued)
 - Flight Performance Prediction (continued)
 - Boost Prediction
 - Coast Prediction
 - Ballistic Flight Prediction
 - Turn Prediction
 - Target Lead for Proportional Homing Guidance
 - Tactical Missile Design Spreadsheet
- Workshop Examples
 - Rocket Boost-Coast Range
 - Rocket Maneuverability
 - Rocket Ballistic Range
 - Rocket Trajectory Optimization
 - Soda Straw Rocket Design, Build, and Fly

Configuration Sizing Criteria for Maximizing Flight Performance

- Body Fineness Ratio
 Nose Fineness Ratio
 Efficient Cruise Dynamic Pressure
 Missile Homing Velocity
 Subsystems Packaging
 Trim Control Power
- Missile Maneuverability

5 < 1/d < 25 $I_N / d \approx 2$ if M > 1 q < 700 psf $V_M / V_T > 1.5$ Maximize available volume for fuel / propellant $\alpha / \delta > 1$ $n_M / n_T > 3$

Bibliography Of Reports and Web Sites

- "Missile.index," <u>http://www.index.ne.jp/missile_e/</u>
- AIAA Aerospace Design Engineers Guide, American Institute of Aeronautics and Astronautics, 1993.
- Bonney, E.A., et al, Aerodynamics, Propulsion, Structures, and Design Practice, "Principles of Guided Missile Design", D. Van Nostrand Company, Inc., Princeton, New Jersey, 1956
- Chin, S.S., Missile Configuration Design, McGraw-Hill Book Company, New York, 1961
- Mason, L.A., Devan, L., and Moore, F.G., "Aerodynamic Design Manual for Tactical Weapons," NSWCTR 81-156, 1981
- Pitts, W.C., Nielsen, J.N., and Kaattari, G.E., "Lift and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds," NACA Report 1307, 1957.
- Jorgensen, L.H., "Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like, and Other Bodies at Angles of Attack From 0° to 180°," NASA TND 6996, January 1973
- Hoak, D.E., et al., "USAF Stability and Control Datcom," AFWAL TR-83-3048, Global Engineering Documents, Irvine, CA, 1978
- "Nielsen Engineering & Research (NEAR) Aerodynamic Software Products," <u>http://www.nearinc.com/near/software.htm</u>
- Jerger, J.J., Systems Preliminary Design Principles of Guided Missile Design, "Principles of Guided Missile Design", D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960
- Schneider, S.H., Encyclopedia of Climate and Weather, Oxford University Press, 1996
- Klein, L.A., *Millimeter-Wave and Infrared Multisensor Design and Signal Processing,* Artech House, Boston, 1997
- US Army Ordnance Pamphlet ORDP-20-290-Warheads, 1980
- Nicholas, T. and Rossi, R., "US Missile Data Book, 1996," Data Search Associates, 1996
- Bithell, R.A., and Stoner, R.C., "Rapid Approach for Missile Synthesis," AFWAL TR 81-3022, Vol. I, March 1982
- Fleeman, E.L. and Donatelli, G.A., "Conceptual Design Procedure Applied to a Typical Air-Launched Missile," AIAA 81-1688, August 1981
- Hindes, J.W., "Advanced Design of Aerodynamic Missiles (ADAM)," October 1993

Bibliography of Reports and Web Sites (cont)

- Bruns, K.D., Moore, M.E., Stoy, S.L., Vukelich, S.R., and Blake, W.B., "Missile Datcom," AFWAL-TR-91-3039, April 1991
- Moore, F.G., et al, "Application of the 1998 Version of the Aeroprediction Code," Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October 1999
- Fleeman, E.L., "Tactical Missile Design," American Institute of Aeronautics and Astronautics, Reston, VA, 2001
- Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, New York, 1974
- "Missile System Flight Mechanics," AGARD CP270, May 1979
- + Hogan, J.C., et al., "Missile Automated Design (MAD) Computer Program," AFRPL TR 80-21, March 1980
- Rapp, G.H., "Performance Improvements With Sidewinder Missile Airframe," AIAA Paper 79-0091, January 1979
- Nicolai, L.M., Fundamentals of Aircraft Design, METS, Inc., San Jose, CA, 1984
- Lindsey, G.H. and Redman, D.R., "Tactical Missile Design," Naval Postgraduate School, 1986
- Lee, R. G., et al, *Guided Weapons, Third Edition*, Brassey's, London, 1998
- Giragosian, P.A., "Rapid Synthesis for Evaluating Missile Maneuverability Parameters," 10th AIAA Applied Aerodynamics Conference, June 1992
- Fleeman, E.L. "Aeromechanics Technologies for Tactical and Strategic Guided Missiles," AGARD Paper presented at FMP Meeting in London, England, May 1979
- Raymer, D.P., Aircraft Design, A Conceptual Approach, American Institute of Aeronautics and Astronautics, Reston, VA, 1989
- Ball, R.E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, American Institute of Aeronautics and Astronautics, Reston, VA, 1985
- Eichblatt, E.J., Test and Evaluation of the Tactical Missile, American Institute of Aeronautics and Astronautics, Reston, VA, 1989
- "DoD Index of Specifications and Standards," <u>http://stinet.dtic.mil/str/dodiss4_fields.html</u>"
- Periscope," <u>http://www.periscope.usni.com</u>

Bibliography of Reports and Web Sites (cont)

- Defense Technical Information Center, http://www.dtic.mil/
- "Aircraft Stores Interface Manual (ASIM)," <u>http://www.asim.net</u>
- "Advanced Sidewinder Missile AIM-9X Cost Analysis Requirements Description (CARD)," <u>http://web2.deskbook.osd.mil/valhtml/2/2B/2B4/2B4T01.htm</u>
- Briggs, M.M., Systematic Tactical Missile Design, Tactical Missile Aerodynamics: General Topics, "AIAA Vol. 141 Progress in Astronautics and Aeronautics," American Institute of Aeronautics, Reston, VA, 1992
- Briggs, M.M., et al., "Aeromechanics Survey and Evaluation, Vol. 1-3," NSWC/DL TR-3772, October 1977
- "Missile Aerodynamics," NATO AGARD LS-98, February 1979
- "Missile Aerodynamics," NATO AGARD CP-336, February 1983
- "Missile Aerodynamics," NATO AGARD CP-493, April 1990
- "Missile Aerodynamics," NATO RTO-MP-5, November 1998
- Nielsen, J.N., *Missile Aerodynamics*, McGraw-Hill Book Company, New York, 1960
- Mendenhall, M.R. et al, "Proceedings of NEAR Conference on Missile Aerodynamics," NEAR, 1989
- Nielsen, J.N., "Missile Aerodynamics Past, Present, Future," AIAA Paper 79-1818, 1979
- Dillenius, M.F.E., et al, "Engineering-, Intermediate-, and High-Level Aerodynamic Prediction Methods and Applications," Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October, 1999
- Nielsen, J.N., and Pitts, W.C., "Wing-Body Interference at Supersonic Speeds with an Application to Combinations with Rectangular Wings," NACA Tech. Note 2677, 1952
- Burns, K. A., et al, "Viscous Effects on Complex Configurations," WL-TR-95-3060, 1995
- "A Digital Library for NACA," <u>http://naca.larc.gov</u>
- Spreiter, J.R., "The Aerodynamic Forces on Slender Plane-and Cruciform-Wing and Body Combinations", NACA Report 962, 1950
- Simon, J. M., et al, "Missile DATCOM: High Angle of Attack Capabilities, AIAA-99-4258.

Bibliography of Reports and Web Sites (cont)

• Lesieutre, D., et al, "Recent Applications and Improvements to the Engineering-Level Aerodynamic Prediction Software MISL3," AIAA-2002-0274

Sutton, G.P., Rocket Propulsion Elements, John Wiley & Sons, New York, 1986

+ "Tri-Service Rocket Motor Trade-off Study, Missile Designer's Rocket Motor handbook," CPIA 322, May 1980

Chemical Information Propulsion Agency, <u>http://www.jhu.edu/~cpia/index.html</u>

Follow-up Communication

I would appreciate receiving your comments and corrections on this text, as well as any data, examples, or references that you may offer.

Thank you,

Gene Fleeman

4472 Anne Arundel Court Lilburn, GA 30047 Telephone: +1 770-925-4635 (home) +1 404-894-7777 (work) Fax: +1 404-894-6596 E-mail: GeneFleeman@msn.com (home) Eugene.Fleeman@asdl.gatech.edu (work) Web Site: http://www.asdl.gatech.edu