Maximizing Milssile Filight Performance

Eugene L. Fleeman
Senior Technical Advisor
Georgia Institute of Technology

Outline

Parameters and Technologies That Drive Missile

Flight Performance
Missile Flight Performance Prediction
Examples of Maximizing Missile Flight Performance (Workshop)
Summary

Parameters That Drive Missile Flight

Small Diameter Missiles Have Low Drad

Supersonic Drag Is Driven by Nose Hineness

$\left(C_{D_{0}}\right)_{\text {Body, Wave }}=\left(1.59+1.83 / M^{2}\right)\left\{\tan ^{-1}\left[0.5 /\left(I_{N} / d\right)\right]\right\}^{1.69}$, for $M>1$. Based on Bonney reference, $\tan ^{-1}$ in rad. $\left(C_{D_{0}}\right)_{\text {Base,Coast }}=0.25 / M$, if $M>1$ and $\left(C_{D_{0}}\right)_{\text {Base,Coast }}=\left(0.12+0.13 \mathrm{M}^{2}\right)$, if $M<1$
$\left(C_{D_{0}}\right)_{\text {Base, Powered }}=\left(1-A_{e} / S_{\text {Ref }}\right)(0.25 / M)$, if $M>1$ and $\left(C_{D_{0}}\right)_{\text {Base,Powered }}=\left(1-A_{e} / S_{\text {Ref }}\right)\left(0.12+0.13 M^{2}\right)$, if $M<1$ $\left(C_{D_{0}}\right)_{\text {Body,Friction }}=0.053(\mathrm{I} / \mathrm{d})[\mathrm{M} /(\mathrm{qI})]^{0.2}$. Based on Jerger reference, turbulent boundary layer, q in psf, l in ft . $\left(C_{D_{0}}\right)_{\text {Body }}=\left(C_{D_{0}}\right)_{\text {Body, Wave }}+\left(C_{D_{0}}\right)_{\text {Base }}+\left(C_{D_{0}}\right)_{\text {Body,Friction }}$
Note: ($\left.C_{D_{0}}\right)_{\text {Body, Wave }}=$ body zero-lift wave drag coefficient, $\left(C_{D_{0}}\right)_{\text {Base }}=$ body base drag coefficient, $\left(C_{D_{0}}\right)_{\text {Body, Friction }}=$ body skin friction drag coefficient, ($\left.C_{D_{0}}\right)_{\text {Body }}=$ body zero-lift drag coefficient, $I_{N}=$ nose length, $d=$ missile diameter, $I=$ missile body length, $A_{e}=$ nozzle exit area, $S_{\text {Ref }}=$ reference area, $q=$ dynamic pressure, $\tan ^{-1}\left[0.5 /\left(I_{N} / d\right)\right]$ in rad

Lifting Body Has Higher Normal Force

$\left|C_{N}\right|=[|(a / b) \cos \phi+(b / a) \sin \phi|]\left[|\sin (2 \alpha) \cos (\alpha / 2)|+2(1 / d) \sin ^{2} \alpha\right]$

Large Surface Area Increases Normal Force and

$$
\begin{gathered}
\left|\left(C_{N}\right)_{\text {Wing }}\right|=\left[4\left|\sin \alpha^{\prime} \cos \alpha^{\prime}\right| /\left(M^{2}-1\right)^{1 / 2}+2 \sin ^{2} \alpha^{\prime}\right]\left(S_{W} / S_{\text {Ref }}\right) \text {, if } M>\left\{1+[8 /(\pi A)]^{2}\right\}^{1 / 2} \\
\left|\left(C_{N}\right)_{\text {Wing }}\right|=\left[(\pi A / 2)\left|\sin \alpha^{\prime} \cos \alpha^{\prime}\right|+2 \sin ^{2} \alpha^{\prime}\right]\left(S_{W} / S_{\text {Ref }}\right) \text {, if } M<\left\{1+[8 /(\pi A)]^{2}\right\}^{1 / 2}
\end{gathered}
$$

Note: Linear wing theory applicable if $M>\left\{1+[8 /(\pi A)]^{2}\right\}^{1 / 2}$, slender wing theory applicable if $M<\left\{1+[8 /(\pi A)]^{2}\right\}^{1 / 2}$, $\mathrm{A}=$ Aspect Ratio, $\mathrm{S}_{\mathrm{w}}=$ Wing Planform Area, $\mathrm{S}_{\text {Ref }}=$ Reference Area

$\alpha^{\prime}=\alpha_{W}=\alpha+\delta$, Wing Effective Angle of Attack, Deg

Wing Skin Friction Drag Is Larger Than Shock

Example for Rocket Baseline Wing:
$\mathrm{n}_{\mathrm{w}}=2, \mathrm{~h}=20 \mathrm{Kft}(\mathrm{q}=2,725 \mathrm{psf}), \mathrm{c}_{\mathrm{mac}}=1.108 \mathrm{ft}, \mathrm{S}_{\text {Ref }}$ $=50.26 \mathrm{in}^{2}, \mathrm{~S}_{\mathrm{w}}=367 \mathrm{in}^{2}, \delta_{\mathrm{LE}}=10.01 \mathrm{deg}, \Lambda_{\mathrm{LE}}=45$
$\operatorname{deg}, \mathrm{t}_{\text {mac }}=0.585 \mathrm{in}, \mathrm{b}=32.2 \mathrm{in}, \mathrm{M}=2\left(\mathrm{M}_{\mathrm{A}_{\mathrm{LE}}}=1.41\right)$
$\left(\mathrm{C}_{\mathrm{D}}\right)_{\text {wing. Friction }} \mathrm{S}_{\text {Ref }} /\left[\mathrm{n}_{\mathrm{w}} \mathrm{S}_{\mathrm{w}}\right]=2\{(0.0133)\{2 /[($ $\left.2725)(1.108)]\}^{0.2}\right\}=0.00615$
$\left(C_{D_{0}}\right)_{\text {Wing, Ficicion }}=0.00615(2)(367) / 50.26=0.090$
$\left(C_{D_{0}}\right)_{\text {Wing,Wave }}=0.024$
$\left(C_{D_{0}}\right)_{\text {wing }}=0.024+0.090=0.11$

Relaxed Static Margin Allows Higher Trim Angle

High Specific Impulse Provides Higher Thrust and

Solid Rockets Have High Acceleration Capability

Note:

$P_{C}=$ Chamber pressure, $A_{t}=$ Nozzle throat area, $m^{\prime}=$ Mass flow rate $\mathrm{d}=$ Diameter, $\rho_{\infty}=$ Free stream density, $\mathrm{V}_{\infty}=$ Free stream velocity, $V_{e}=$ Nozzle exit velocity (Turbojet: $V_{e} \sim 2,000 \mathrm{ft} / \mathrm{sec}$, Ramjet: $V_{e} \sim 4,500 \mathrm{ft} / \mathrm{sec}$, Rocket: $\mathrm{V}_{\mathrm{e}} \sim 6,000 \mathrm{ft} / \mathrm{sec}$)

High Ihrust for a Ramjet Occurs from Mach 3 to

Maximum Specific Impulse And Thrust of Rocket

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{SP}}=\mathrm{c}_{\mathrm{d}}\left\{\left\{\left[2 \gamma^{2} /(\gamma-1)\right][2 /(\gamma+1)]^{(\gamma-1) /(\gamma+1)}\left[1-\left(p_{\mathrm{e}} / \mathrm{p}_{\mathrm{c}}\right)^{(\gamma-1) / \gamma}\right]\right\}^{1 / 2}+\left(\mathrm{p}_{\mathrm{e}} / \mathrm{p}_{\mathrm{c}}\right) \varepsilon-\left(\mathrm{p}_{0} / \mathrm{p}_{\mathrm{c}}\right) \varepsilon\right\} \mathrm{c}^{*} / \mathrm{g}_{\mathrm{c}} \\
& \mathrm{~T}=\left(\mathrm{g}_{\mathrm{c}} / \mathrm{c}^{*}\right) \mathrm{p}_{\mathrm{c}} \mathrm{~A}_{\mathrm{t}} \mathrm{I}_{\mathrm{SP}} \\
& \left.\varepsilon=\left\{\left[2 /(\gamma+1)^{1 /(\gamma-1)}\right][(\gamma-1) /(\gamma+1)]^{1 / 2}\right]\right\} /\left\{\left(\mathrm{p}_{\mathrm{e}} / \mathrm{p}_{\mathrm{c}}\right)^{1 / \gamma}\left[1-\left(\mathrm{p}_{\mathrm{e}} / \mathrm{p}_{\mathrm{c}}\right)^{(\gamma-1) / \gamma}\right]^{1 / 2}\right\}
\end{aligned}
$$

	Note: $\varepsilon=$ nozzle expansion ratio $\mathrm{p}_{\mathrm{e}}=$ exit pressure $\mathrm{p}_{\mathrm{c}}=$ chamber pressure $\mathrm{p}_{0}=$ atmospheric pressure $\mathrm{A}_{\mathrm{t}}=$ nozzle throat area $\gamma=$ specific heat ratio $=1.18$ in figure $\mathrm{c}_{\mathrm{d}}=$ discharge coefficient $=0.96$ in figure $c^{*}=$ characteristic velocity $=5,200 \mathrm{ft} / \mathrm{sec}$ in figure
完	Example for Rocket Baseline:
\%	$\varepsilon=\mathrm{A}_{\mathrm{e}} / \mathrm{A}_{\mathrm{t}}=6.2, \mathrm{~A}_{\mathrm{t}}=1.81 \mathrm{in}^{2}$
®	$\mathrm{h}=20 \mathrm{Kft}, \mathrm{p}_{0}=6.48 \mathrm{psi}$
$\begin{array}{lllll}0 & 5 & 10 & 15 & 20\end{array}$	$\left(p_{\text {c }}\right)_{\text {boost }}=1769 \mathrm{psi},\left(\mathrm{I}_{\text {SP }}\right)_{\text {boost }}=257 \mathrm{sec}$
Nozzle Expansion Ratio	$(\mathrm{T})_{\text {boost }}=(32.2 / 5200)(1769)(1.81)(257)=5096 \mathrm{lb}$
$\begin{array}{\|ll\|} -\mathrm{h}=\mathrm{SL}, \mathrm{pc}=300 \mathrm{psi} & --\mathrm{h}=\mathrm{SL}, \mathrm{pc}=1000 \mathrm{psi} \\ ---\mathrm{h}=\mathrm{SL}, \mathrm{pc}=3000 \mathrm{psi} & ---\mathrm{h}=100 \mathrm{Kft}, \mathrm{pc}>300 \mathrm{psi} \end{array}$	$\begin{aligned} & \left(p_{c}\right)_{\text {sustain }}=301 \mathrm{psi},\left(\mathrm{I}_{\mathrm{sp}}\right)_{\text {sustain }}=239 \mathrm{sec} \\ & (\mathrm{~T})_{\text {boost }}=(32.2 / 5200)(301)(1.81)(239)=807 \mathrm{lb} \end{aligned}$

Cruise Range Is Driven By L/D, Isp, Velocity, and

$$
R=(L / D) I_{s p} V \ln \left[W_{L} /\left(W_{L}-W_{P}\right)\right] \text {, Breguet Range Equation }
$$

Parameter	Typical Value for 2,000 lb Precision Strike Missile			
	Subsonic Turbojet Missile	Liquid Fuel Ramjet Missile	Hydrocarbon Fuel Scramjet Missile	Solid Rocket
L / D, Lift / Drag $I_{\text {sp }}$, Specific Impulse $\mathrm{V}_{\mathrm{AvG}}$, Average Velocity $\mathrm{W}_{\mathrm{P}} / \mathrm{W}_{\mathrm{L}}$, Cruise Propellant or Fuel Weight / Launch Weight R, Cruise Range	$\begin{aligned} & 10 \\ & 3,000 \mathrm{sec} \\ & 1,000 \mathrm{ft} / \mathrm{sec} \\ & 0.3 \\ & 1,800 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 1,300 \mathrm{sec} \\ & 3,500 \mathrm{ft} / \mathrm{sec} \\ & 0.2 \\ & 830 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 3 \\ & 1,000 \mathrm{sec} \\ & 6,000 \mathrm{ft} / \mathrm{sec} \\ & 0.1 \\ & 310 \mathrm{~nm} \end{aligned}$	5 250 sec $3,000 \mathrm{ft} / \mathrm{sec}$ 0.4 250 nm
Note: Ramjet and Scramjet missiles booster propellant for Mach 2.5 to 4 take-over speed not included in W_{p} for cruise. Rockets require thrust magnitude control (e.g., pintle, pulse, or gel motor) for effective cruise. Max range for a rocket is usually a semi-ballistic flight profile, instead of cruise flight.				

Surry Fue and Efifcient Packaging Provide

Propulsion / Configuration	Fuel Type / Volumetric Performance (BTU / in3) / Density (lb/in3)	Fuel Volume (in3) I Fuel Weight (lb)	ISP (sec) / Cruise Range at Mach 3.5, $60 \mathrm{Kft}(\mathrm{nm})$
Liquid Fuel Ramjet	RJ-5/581/0.040	$11900 / 476$	1120/390
Ducted Rocket (Low Smoke)	Solid Hydrocarbon / 1132 / 0.075	7922 / 594	677 / 294
Ducted Rocket (High Performance)	Boron / 2040 / 0.082	7922 / 649	769 / 366
Solid Fuel Ramjet	Boron / 2040 / 0.082	7056 / 579	1170 / 496
Slurry Fuel Ramjet	40\% JP-10, 60\% boron carbide / 1191 / 0.050	11900 / 595	$1835 / 770$

Flow Path
Available Fuel $R_{\text {cruise }}=V_{\text {SP }}(L / D) \ln \left[W_{B C} /\left(W_{B C}-W_{f}\right)\right]$

Flight Trajectory Shaping Provides Extended Range

Design Guidelines for Horizontal Launch:

- High thrust-to-weight ≈ 10 for safe separation
- Rapid pitch up minimizes time / propellant to reach efficient altitude
- Climb at a ≈ 0 deg with thrust-to-weight ≈ 2 and $q \approx 700 \mathrm{psf}$ minimizes drag / propellant to reach efficient cruise altitude for ($L / D)_{\text {max }}$
- High altitude cruise at (L/D) max and $q \approx 700$ psf maximizes range
- Glide from high altitude at $(L / D)_{M a x}$ and $q \approx 700$ psf provides extended range

Rocket Baseline MIssile Range Driven by Isp,

Ramjet Baseline Range Is Driven by $I_{\text {sp, }}$ FueI

Ramiet Baseline Fight Range Uncertainty Is +/- 7\%, 1 o

Parameter	Baseline Value at Mach $3.0 / 60 \mathrm{ft}$	Uncertainty in Parameter	$\Delta R / \mathrm{R}$ due to Uncertainty
1. Inert Weight	1205 lb	$+/-2 \%, 1 \sigma$	$+/-0.8 \%, 1 \sigma$
2. Ramjet Fuel Weight	476 lb	$+/-1 \%, 1 \sigma$	$+/-0.9 \%, 1 \sigma$
3. Zero-Lift Drag Coefficient	0.17	$+/-5 \%, 1 \sigma$	$+/-4 \%, 1 \sigma$
4. Lift Curve Slope Coefficient	$0.13 / \mathrm{deg}$	$+/-3 \%, 1 \sigma$	$+/-1 \%, 1 \sigma$
5. Cruise Thrust $(\phi=0.39)$	458 lb	$+/-5 \%, 1 \sigma$	$+/-2 \%, 1 \sigma$
6. Specific Impulse	1040 sec	$+/-5 \%, 1 \sigma$	$+/-5 \%, 1 \sigma$

- Level of Maturity of Ramjet Baseline Based on Flight Demo of Prototype and Subsystem Tests
-Wind tunnel tests
Direct connect, freejet, and booster firing propulsion tests
Structure test
- Hardware-in-loop simulation

Total Flight Range Uncertainty at Mach $3.0 / 60 \mathrm{Kft}$ Flyout
$\Delta R / R=\left[(\Delta R / R)_{1}{ }^{2}+(\Delta R / R)_{2}{ }^{2}+(\Delta R / R)_{3}{ }^{2}+(\Delta R / R)_{4}{ }^{2}+(\Delta R / R)_{5}{ }^{2}+(\Delta R / R)_{6}{ }^{2}\right]^{1 / 2}=+/-6.9 \%, 1 \sigma$

US Tactical Missile Follow-On Programs Provide

Example of Missile Technology State-of-the-Art

Example of Missile Technology State-of-the-Art

New rechnologies that Enhance ractical IIIssile

Outline

- Parameters and Technologies That Drive Missile Flight Performance
Missile Flight Performance Prediction
Examples of Maximizing Missile Flight Performance (Workshop)
Summary

Examples of Air Launched Missile Flight
Performance

Examples of Surface Launched Missile Flight

 Performance

Conceptual Design Modeling Versus Preliminary

Conceptual Design Modeling
-1 DOF [Axial force ($C_{D_{0}}$), thrust, weight]
-2 DOF [Normal force (C_{N}), axial force, thrust, weight]

- 3 DOF point mass [3 forces (normal, axial, side), thrust, weight]
-3 DOF pitch [2 forces (normal, axial), 1 moment (pitch), thrust, weight]

4 DOF [2 forces (normal, axial), 2 moments (pitch, roll), thrust, weight]

Preliminary Design Modeling
-6 DOF [3 forces (normal, axial, side), 3 moments (pitch,
 roll, yaw), thrust, weight]

3 DOF Simplified Equations of Motion Show

Configuration Sizing Implication

$$
\mathrm{I}_{\mathrm{y}} \theta^{\prime \prime} \approx \mathrm{q} \mathrm{~S}_{\text {Ref }} \mathrm{dC}_{\mathrm{m}_{\alpha}} \alpha+\mathrm{q} \mathrm{~S}_{\text {Ref }} \mathrm{dC}_{\mathrm{m}_{\delta}} \delta
$$

$$
\left(\mathrm{W} / \mathrm{g}_{\mathrm{c}}\right) \mathrm{V} \gamma^{*} \approx \mathrm{q} \mathrm{~S}_{\mathrm{Ref}} \mathrm{C}_{\mathrm{N}_{\alpha}} \alpha+\mathrm{q} \mathrm{~S}_{\mathrm{Ref}} \mathrm{C}_{\mathrm{N}_{\delta}} \delta-\mathrm{W} \cos \gamma
$$

$\left(W / g_{c}\right) V^{\prime} \approx T-C_{A} S_{\text {Ref }} q-C_{N_{\alpha}} \alpha^{2} S_{\text {Ref }} q-W \sin \gamma$

High Control Effectiveness $\Rightarrow \mathrm{C}_{\mathrm{m}_{\delta}}>$ $\mathrm{C}_{\mathrm{m}_{\alpha}}, \mathrm{l}_{\mathrm{y}}$ small (W small), q large Large / Fast Heading Change $\Rightarrow C_{N}$ large, W small, q large

High Speed / Long Range \Rightarrow Total Impulse large, C_{A} small, q small

For Long Range Cruise, Maximize V Ispy L / D,

Note: $\mathrm{R}=$ cruise range, $\mathrm{V}=$ cruise velocity, $\mathrm{I}_{\mathrm{SP}}=$ specific impulse, $\mathrm{L}=$ lift, $\mathrm{D}=\mathrm{drag}$, $W_{B C}=$ weight at begin of cruise,$W_{P}=$ weight of propellant or fuel

Efficient Steady Fight Is Enhanced by High L/D

Steady Level Flight

$\mathrm{T}=\mathrm{W} /(\mathrm{L} / \mathrm{D})$
Note:

- Small Angle of Attack
- Equilibrium Flight
- $\mathrm{V}_{\mathrm{C}}=$ Velocity of Climb
- $\mathrm{V}_{\mathrm{D}}=$ Velocity of Descent
- $\gamma_{\mathrm{c}}=$ Flight Path Angle During Climb
- $\gamma_{\mathrm{D}}=$ Flight Path Angle During Descent
- $\mathrm{V}_{\infty}=$ Total Velocity
- $\Delta h=$ Incremental Altitude
- $\mathrm{R}_{\mathrm{C}}=$ Horizontal Range in Steady Climb
- $R_{D}=$ Horizontal Range in Steady Dive (Glide)

Reference: Chin, S.S., "Missile Configuration Design,"
McGraw Hill Book Company, New York, 1961

Steady Descent

$\operatorname{SIN} \gamma_{D}=(D-T) / W=V_{D} / V_{\infty}$
$V_{D}=(D-T) V_{\infty} / W$ $R_{D}=\Delta h / \tan \gamma_{D}=\Delta h(L / D)$

$$
\begin{aligned}
& V_{C}=(T-D) V_{\infty} / W \\
& R_{C}=\Delta h / \tan \gamma_{C}=\Delta h(L / D)
\end{aligned}
$$

Small Turn Radius Requires High Angle of Attack

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{T}}=\mathrm{V} / \gamma^{\prime} \approx 2 \mathrm{~W} /\left(\mathrm{g}_{\mathrm{c}} \mathrm{C}_{\mathrm{N}} \mathrm{~S}_{\text {Ref }} \rho\right) \quad \begin{array}{l}
\text { Note for Example: } \\
\mathrm{W}=\text { Weight }=2,000 \mathrm{lb}
\end{array}
\end{array}
$$

$a / b=1$ (circular cross section), No wings

$\Delta \alpha=$ Increment in Angle of Attack Required to Turn, Degrees

Turn Rate Performance Requires High Control

$\gamma^{\prime}=g_{c} \mathrm{n} / \mathrm{V}=\left[q \mathrm{~S}_{\text {Ref }} \mathrm{C}_{\mathrm{N}_{\alpha}} \alpha+\mathrm{q} \mathrm{S}_{\text {Ref }} \mathrm{C}_{\mathrm{N}_{\delta}} \delta-\mathrm{W} \cos (\gamma)\right] /\left[\left(\mathrm{W} / \mathrm{g}_{\mathrm{c}}\right) \mathrm{V}\right]$
Assume Rocket Baseline @ Mach 0.8 Launch, 20K ft Altitude

- $\left(\mathrm{C}_{\mathrm{m}_{\alpha}}\right)_{\text {xcg=84.6 }}=\left(\mathrm{C}_{\mathrm{m}_{\alpha}}\right)_{\text {xcg=75.7 }}+\mathrm{C}_{\mathrm{C}_{\alpha}}(84.6-75.7) / \mathrm{d}=-0.40+0.68(8.9) / 8=0.36 \mathrm{per} \mathrm{deg}$
- $\left(\mathrm{C}_{\mathrm{m}_{\delta} \mathrm{xcgeg}^{2} 8.6}=\left(\mathrm{C}_{\left.\mathrm{m}_{\delta}\right)_{\mathrm{xg}}=75.7}+\mathrm{C}_{\mathrm{N}_{\delta}}(84.6-75.7) / \mathrm{d}=0.60+0.27(8.9) / 8=0.90 \mathrm{per} \mathrm{deg}\right.\right.$
- $\alpha / \delta=-\mathrm{C}_{\mathrm{m}_{\delta}} / \mathrm{C}_{m_{\alpha}}=-0.90 / 0.36=-2.5$
- $\alpha^{\prime}=\alpha+\delta<22$ degrees, $\alpha_{\text {max }}=30 \mathrm{deg} \Rightarrow \alpha=30 \mathrm{deg}, \delta=-12 \mathrm{deg}$
- $\gamma^{\prime}=[436(0.349)(0.68)(30)+436(0.349)(0.27)(-12)-500(1)] /[(500 / 32.2)(830)]=$ $0.164 \mathrm{rad} / \mathrm{sec}$ or $9.4 \mathrm{deg} / \mathrm{sec}$
Assume Rocket Baseline @ Mach 2 Coast, 20K ft Altitude
- $\alpha / \delta=0.75$
- $\alpha^{\prime}=\alpha+\delta=22$ degrees $\Rightarrow \delta=12.6 \mathrm{deg}, \alpha=9.4 \mathrm{deg}$
- $\gamma^{\prime}=[2725(0.349)(0.60)(9.4)+2725(0.349)(0.19)(12.6)-367(1)] /(367 / 32.2)(2074)=$ $0.31 \mathrm{rad} / \mathrm{sec}$ or $18 \mathrm{deg} / \mathrm{sec}$
- Note: High q, statically stable, forward wing control, lighter weight \Rightarrow higher climb capability
- Note: Forward wing deflection to trim increases normal force

For Long Range Ballistic Filight, Maximize Initial

High Propelant Weight and High Thrust Provide

Note: 1 DOF Equation of Motion with $\alpha \approx 0$ deg, $\gamma=$ constant, and $T>W \sin \gamma, W_{i}=$ initial weight, $W_{P}=$ propellant weight, $\mathrm{I}_{\mathrm{SP}}=$ specific impulse, $\mathrm{T}=$ thrust, $\mathrm{M}_{\mathrm{i}}=$ initial Mach number, $\mathrm{h}_{\mathrm{i}}=$ initial altitude, $\mathrm{D}_{\text {AVG }}=$ average drag, $\Delta \mathrm{V}=$ incremental velocity, $\mathrm{g}_{\mathrm{c}}=$ gravitation constant, $\mathrm{V}_{\mathrm{x}}=\mathrm{V} \cos \gamma, \mathrm{V}_{\mathrm{y}}=\mathrm{V} \sin \gamma, \mathrm{R}_{\mathrm{x}}=\mathrm{R} \cos \gamma, \mathrm{R}_{\mathrm{y}}=\mathrm{R} \sin \gamma$
Note: $R=\left(V_{i}+\Delta V / 2\right) t_{B}$, where $R=$ boost range, $V_{i}=$ initial velocity, $t_{B}=$ boost time

High Missile Velocity and Lead Are Required to

$$
\begin{array}{llll|}
\hline V_{M} \sin \mathrm{~L}=\mathrm{V}_{\mathrm{T}} \sin \mathrm{~A} \text {, Proportional Guidance Trajectory } \\
\hline
\end{array}
$$

Example of Spreadsheet Based Conceptual

Define Mission Requirements [Flight Performance ($\mathrm{R}_{\mathrm{Max}}, \mathrm{R}_{\mathrm{Min}}, \mathrm{V}_{\mathrm{AVG}}$) , MOM, Constraints]
Define Mission Requirements [Fight Performand Alt Mission

Outline

- Examples of Parameters and Technologies That Drive Missile Flight Performance
- Missile Flight Performance Prediction
- Examples of Maximizing Missile Flight Performance (Workshop)
- Summary

Rocket Baseline Missile Conficuration

Note: Dimensions in inches
Source: Bithell, R.A. and Stoner, R.C., "Rapid Approach for Missile Synthesis, Vol. 1, Rocket Synthesis Handbook," AFWAL-TR-81-3022, Vol. 1, March 1982.

Rocket Baseline Missile Propellant Weight Is

Component	Weight, Ibs.	C.G. STA, In.	
(1)	Nose (Radome)	4.1	12.0
(3)	Forebody structure	12.4	30.5
Guidance	46.6	32.6	
(2) Payload Bay Structure	7.6	54.3	
Warhead	77.7	54.3	
(4)	Midbody Structure	10.2	73.5
Control Actuation System	61.0	75.5	
(5)	Aftbody Structure	0.0	-
Rocket Motor Case	47.3	107.5	
Insulation	23.0	117.2	
(6) Tailcone Structure	6.5	141.2	
Nozzle	5.8	141.2	
Fixed Surfaces	26.2	137.8	
Movable Surfaces	38.6	75.5	
Burnout Total	367.0	76.2	
Propellant	133.0	107.8	
Launch Total	500.0	84.6	

Rocket Baseline Missile Has Boost-Sustain

Rocket Baseline MIIssile Has Higher

Rocket Baseline Missile Control Eifectiveness

Rocket Baseline Has High Boost Acceleration

Rocket Baseline MIssile Has Nearly Constant

Rocket Baseline Missile Maximum Range Is

Rocket Baseline Missile Has About 30 G

$$
\psi\left(n_{z}\right)=\left(n_{z}\right)_{\text {Body }}+\left(n_{z}\right)_{\text {wing }}+\left(n_{z}\right)_{\text {Taill }}
$$

- Rocket Baseline @

-Mach 2
-20,000 ft altitude
-367 lb weight (burnout)
Compute
$\alpha_{\text {Wing }}=\alpha_{\text {Max }}^{\prime}=(\alpha+\delta)_{\text {Max }}=22$ deg for rocket baseline
$\alpha=0.75 \delta, \alpha_{\text {Body }}=\alpha_{\text {Tail }}=9.4 \mathrm{deg}$
$\left(\mathrm{n}_{\mathrm{z}}\right)_{\text {Body }}=\mathrm{q} \mathrm{S}_{\text {Ref }}\left(\mathrm{C}_{\mathrm{N}}\right)_{\text {Body }} / \mathrm{W}=2725(0.35)(1.1) / 367=2.9 \mathrm{~g}($ from body $)$
$\left(n_{z}\right)_{\text {Wing }}=q S_{\text {Wing }}\left[\left(C_{N}\right)_{\text {Wing }}\left(S_{\text {Ref }} / S_{\text {Wing }}\right)\right] / W=2725(2.55)(1.08) / 367=20.4 \mathrm{~g}($ from wing $)$
$\left(\mathrm{n}_{\mathrm{z}}\right)_{\text {Tail }}=\mathrm{q} \mathrm{S}_{\text {Tail }}\left[\left(\mathrm{C}_{\mathrm{N}}\right)_{\text {Tail }}\left(\mathrm{S}_{\text {Ref }} / \mathrm{S}_{\text {Tail }}\right)\right] / \mathrm{W}=2725(1.54)(0.50) / 367=5.7 \mathrm{~g}($ from tail $)$
$\mathrm{n}_{\mathrm{z}}=2.9+20.4+5.7=29 \mathrm{~g}$

Example of Boost Climb - Ballistic Trajectory

Assume Rocket Baseline @ $\gamma_{\mathrm{i}}=45 \mathrm{deg}, \mathrm{h}_{\mathrm{i}}=\mathrm{h}_{\mathrm{f}}=0 \mathrm{ft}$

Velocity, Horizontal Range, and Altitude During Initial Boost @ $\gamma=45$ deg

$$
\begin{aligned}
\Delta V & =-g_{\mathrm{c}} I_{\mathrm{SP}}\left(1-D_{\mathrm{AVG}} / T\right) \ln \left(1-\mathrm{W}_{\mathrm{p}} / \mathrm{W}_{\mathrm{i}}\right)=-32.2(250)(1-419 / 5750) \ln (1-84.8 / 500) \\
& =1,387 \mathrm{ft} / \mathrm{sec} \\
\Delta R & =\left(\mathrm{V}_{\mathrm{i}}+\Delta V / 2\right) \mathrm{t}_{\mathrm{B}}=(0+1387 / 2) 3.26=2,260 \mathrm{ft} \\
\Delta R_{\mathrm{x}} & =\Delta R \cos \gamma_{\mathrm{i}}=2260(0.707)=1,598 \mathrm{ft} \\
\Delta R_{\mathrm{y}} & =\Delta R \sin \gamma_{\mathrm{i}}=2260(0.707)=1,598 \mathrm{ft} \\
\mathrm{~h} & =\mathrm{h}_{\mathrm{i}}+\Delta R_{\mathrm{y}}=0+1598=1,598 \mathrm{ft}
\end{aligned}
$$

Velocity, Horizontal Range, and Altitude During Sustain @ $\gamma=45$ deg

$$
\begin{aligned}
& \Delta V=-g_{c} I_{\text {SP }}\left(1-D_{\text {AVG }} / T\right) \ln \left(1-W_{p} / W_{i}\right)=-32.2(230.4)(1-650 / 1018) \ln (1-48.2 / \\
& \quad 415.2)=585 \mathrm{ft} / \mathrm{sec} \\
& V_{\mathrm{BO}}=1387+585=1,972 \mathrm{ft} / \mathrm{sec} \\
& \Delta R=\left(V_{i}+\Delta V / 2\right) t_{\mathrm{B}}=(1387+585 / 2) 10.86=18,239 \mathrm{ft} \\
& \Delta R_{\mathrm{x}}=\Delta R \cos \gamma_{\mathrm{i}}=18239(0.707)=12,895 \mathrm{ft} \\
& \Delta R_{\mathrm{y}}=\Delta R \sin \gamma_{\mathrm{i}}=18239(0.707)=12,895 \mathrm{ft} \\
& \mathrm{~h}=\mathrm{h}_{\mathrm{i}}+\Delta R_{\mathrm{y}}=1598+12895=14,493 \mathrm{ft}
\end{aligned}
$$

Example of Boost Climb - Ballistic Irajectory

Velocity, Horizontal Range, and Altitude During Ballistic Flight

$$
\begin{aligned}
& h_{f}=h_{i}=0 \mathrm{ft} \Rightarrow t_{\text {ballistic }}=59 \mathrm{sec} \text {) } \\
& \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{i}} \cos \gamma_{\mathrm{i}} /\left\{1+\mathrm{t} /\left\{2 \mathrm{~W}_{\mathrm{BO}} /\left[\mathrm{g}_{\mathrm{c}} \mathrm{\rho}_{\mathrm{AVG}} \mathrm{~S}_{\mathrm{Ref}}\left(\mathrm{C}_{\mathrm{D}_{0}}\right)_{\mathrm{AVG}} \mathrm{~V}_{\mathrm{BO}}\right]\right\}\right\}=1972(0.707) /\{1+59 /\{2(367) / \\
& [32.2(0.001496)(0.349)(0.95)(1972)]\}\}=395 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{i}} \sin \gamma_{\mathrm{i}} /\left\{1+\mathrm{t} /\left\{2 \mathrm{~W}_{\mathrm{BO}} /\left[\mathrm{g}_{\mathrm{c}} \rho_{\mathrm{AVG}} \mathrm{~S}_{\text {Ref }}\left(\mathrm{C}_{\mathrm{D}_{\mathrm{O}}}\right)_{\mathrm{AVG}} \mathrm{~V}_{\mathrm{BO}}\right]\right\}-32.2 \mathrm{t}=1972(0.707) /\{1+59 /\{2(\right. \\
& 367) /[32.2(0.001496)(0.349)(0.95)(1972)]\}\}-32.2(59)=-1,505 \mathrm{ft} / \mathrm{sec} \\
& R_{x}=\left\{2 W_{B O} \cos \gamma_{i} /\left[g_{c} \rho_{\mathrm{AVG}} S_{\text {Ref }}\left(C_{D_{0}}\right)_{\mathrm{AVG}}\right]\right\} \ln \left\{1+\mathrm{t} /\left\{2 \mathrm{~W}_{\mathrm{BO}} /\left[g_{\mathrm{c}} \rho_{\mathrm{AVG}} \mathrm{~S}_{\text {Ref }}\left(\mathrm{C}_{\mathrm{D}_{\mathrm{o}}}\right)_{\mathrm{AVG}} \mathrm{~V}_{\mathrm{BO}}\right]\right\}\right\}=\{ \\
& 2(367)(0.707) /[32.2(0.001496)(0.349)(0.95)]\} \ln \{1+59 /\{2(367) /[32.2(0.001496 \\
&)(0.349)(0.95)(1972)]\}\}=40,991 \mathrm{ft} \\
& h=h_{i}+\left\{2 W_{B O} \sin \gamma_{i} /\left[g_{c} \rho_{A V G} S_{\text {Ref }}\left(C_{D_{0}}\right)_{A V G}\right]\right\} \ln \left\{1+t /\left\{2 W_{B O} /\left[g_{c} \rho_{A V G} S_{\text {Ref }}\left(C_{D_{0}}\right)_{A V G} V_{B O}\right]\right\}-\right. \\
& 16.1 t^{2}=14493+\{2(367)(0.707) /\{32.2(0.001496)(0.349)(0.95)]\} \ln \{1+59 /\{2(367) \\
& \text { / [} 32.2(0.001496)(0.349)(0.95)(1972)]\}\}-16.1(59)^{2}=0 \mathrm{ft}
\end{aligned}
$$

Total Time of Flight and Horizontal Range

$$
\begin{aligned}
& t=\Sigma \Delta t=\Delta t_{\text {boost }}+\Delta t_{\text {sustain }}+\Delta t_{\text {ballistic }}=3.26+10.86+59=73 \mathrm{sec} \\
& R_{x}=\Sigma \Delta R_{x}=\Delta R_{x, \text { boost }}+\Delta R_{x, \text { sustain }}+\Delta R_{x, \text { ballistic }}=1598+12895+40991=55,894 \mathrm{ft}=9.2 \mathrm{~nm}
\end{aligned}
$$

Boost Climb - Ballistic - Glide Trajectory

Rocket Baseline @ $\gamma_{i}=45$ deg, $h_{i}=h_{f}=0 \mathrm{ft}$

From Previous Example, the Boost Climb - Ballistic Conditions at Apogee are:

- $t=36 \mathrm{sec}$
$\gamma=0 \mathrm{deg}$
- $\mathrm{V}=702 \mathrm{ft} / \mathrm{sec}$
- $\mathrm{h}=28,994 \mathrm{ft}$
- $\Delta R_{x}=36,786 \mathrm{ft}$
- $\mathrm{q}=227 \mathrm{psf}$
- $M=0.7$
($L / D)_{\text {max }}=5.22$
$\alpha_{(L / D)_{\text {max }}}=5.5 \mathrm{deg}$
- Incremental Horizontal Range During the (L/D ($)_{\max }$ Glide from Apogee to the Ground is given by
$\Delta R_{x}=(L / D) \Delta h=5.22(28994)=151,349 \mathrm{ft}$
- Total Horizontal Range for a Boost Climb - Ballistic - Glide Trajectory is
- $\mathrm{R}_{\mathrm{x}}=\Sigma \Delta \mathrm{R}_{\mathrm{x}}=\Delta \mathrm{R}_{\mathrm{x}, \text { BoostClimb-Ballistic }}+\Delta \mathrm{R}_{\mathrm{x}, \text { Glide }}=36786+151349=188,135 \mathrm{ft}=31.0 \mathrm{~nm}$

Glide at (L/D) $)_{\text {max }}$ Provides Extended Range

Soda Straw Rocket Desion, Build, and FIy

- Objective - Hands-on Learning of Rocket Physics Based on
- Design
- Build
- Fly
- Furnished Property
- 1 Launch System
- 1 Target
- 1 Weight Scale

Furnished Material

- 1 Soda Straw: $1 / 4$ in Inside Diameter by 11 in Length
- 1 Strip Tabbing: $1 / 2$ in by 6 in
- 1 Tape Dispenser
- 1 Wood Dowel: $1 / 4$ in Diameter by 1 in Length

Soda Straw Rocket (cont)

Design - Soda Straw Rocket

- Compatible with Furnished Property Launch System
- Launch tube outside diameter: $1 / 4$ in
- Launch tube length: 6 in
- Launch static gauge pressure: up to 30 psi
- Design Body and Tails for
- Maximum flight range
- Accurate and stable flight
- Calculate Aerodynamic Drag Coefficient

Skin friction drag

- Base drag
- Calculate Thrust and Thrust Duration
- Measure Weight
± 0.1 gram accuracy
- Predict Flight Range and Altitude for Proscribed
- Launch pressure
- Elevation angle

Soda Straw Rocket (cont)

- Build - Soda Straw Rocket Using Either
- Furnished Material
- Or Can Use Own Material

Fly - Soda Straw Rocket

- Proscribed Target Location, Launch Location, Launch Pressure, and Launch Angle
- Compare Flight Test Results for Alternative Concepts
- Highest vertical location of impact
- Smallest horizontal dispersal from impact aim point
- Discuss Reasons for Performance of Alternative Concepts

Example Baseline Conitguration Geometry,

Example Baseline Configuration

- Diameter = d=1/4 in = 0.0208 ft
- Outside Length = I=5 in = 0.417 ft

- Inside Cavity Length Available for Launch Tube $=I_{c}=4 \mathrm{in}=0.333 \mathrm{ft}$
- Hemispherical Nose
- Reference Area $=\mathrm{S}_{\text {Ref }}=(\pi / 4) \mathrm{d}^{2}=0.0491 \mathrm{in}^{2}=0.000341 \mathrm{ft}^{2}$
- 4 Tail Panels (Cruciform Tails, $\mathrm{n}_{\mathrm{T}}=2$)
- Each tail panel $1 / 2$ in by 1 in
- Mean aerodynamic chord $=c_{\text {mac }}=1 \mathrm{in}=0.0833 \mathrm{ft}$
- Exposed area of 2 tail panels $=S_{T}=1 \mathrm{in}^{2}=0.00694 \mathrm{ft}^{2}$
- Exposed aspect ratio of 2 tail panels $=A=b^{2} / S_{T}=(1)^{2} /(1)=1.0$

Example Baseline Weight and Balance

- $\mathrm{W}=1.9$ gram $=0.0042 \mathrm{lb}$
- $\mathrm{X}_{\mathrm{cg}} / \mathrm{I}=0.55$

Example Baseline Boost Performance

- During Boost, Thrust (T) Provided by Pressurized Launch Tube
- $T=\left(p-p_{0}\right) A=p_{\text {gauge }}\left(1-e^{-t / \tau}\right) A$
- $A=S_{\text {Ref }}=0.0491$ in $^{2}, \tau=$ Rise Time to Open Valve
- Assume $\mathrm{p}_{\text {gauge }}=20 \mathrm{psi}, \tau=0.2 \mathrm{sec}$
- $\mathrm{T}=20\left(1-\mathrm{e}^{-\mathrm{t} / 0.2}\right)(0.0491)=0.982\left(1-\mathrm{e}^{-5.00 \mathrm{t}}\right)$
- Actual Thrust Lower (Pressure Loss, Boundary Layer, Launch Tube Friction)
- Acceleration (a), Velocity (V), and Distance (s) During Boost
- $\mathrm{a} \approx 32.2 \mathrm{~T} / \mathrm{W}=32.2(0.982)\left(1-\mathrm{e}^{-5.00 \mathrm{t}}\right) / 0.0042=7528.667\left(1-\mathrm{e}^{-5.00 \mathrm{t}}\right)$
- $V=7528.667 \mathrm{t}+1505.733 \mathrm{e}^{-5.00 \mathrm{t}}-1505.733$
- $s=3764.333 t^{2}-301.147 e^{-5.00 t}-1505.733 t+301.147$
- End of Boost Conditions
- $s=I_{c}=0.333 \mathrm{ft} \Rightarrow t=0.0382 \mathrm{sec}$
- $\mathrm{V}=25.8 \mathrm{ft} / \mathrm{sec}$
- $q=1 / 2 \rho V^{2}=1 / 2(0.002378)(25.8)^{2}=0.791 p s f$
- $M=V / c=25.8 / 1116=0.0231$

Examole Baseline Drac Coefficient

Total Drag Coefficient $\mathrm{C}_{\mathrm{D}_{0}}=\left(\mathrm{C}_{\mathrm{D}_{0}}\right)_{\text {Body }}+\left(\mathrm{C}_{\mathrm{D}_{0}}\right)_{\text {Tail }}$
During Coast, $C_{D_{0}}=\left(C_{D_{0}}\right)_{\text {Body,Friction }}+\left(C_{D_{D}}\right)_{\text {Base,Coast }}+\left(C_{D_{0}}\right)_{\text {Tail.Friction }}=0.053$ $(\mathrm{I} / \mathrm{d})[\mathrm{M} /(\mathrm{qI})]^{0.2}+0.12+\mathrm{n}_{\mathrm{T}}\left\{0.0133\left[\mathrm{M} /\left(\mathrm{q} \mathrm{c}_{\mathrm{mac}}\right)\right]^{0.2}\right\}\left(2 \mathrm{~S}_{\mathrm{T}} / \mathrm{S}_{\text {Ref }}\right)$
$-C_{D_{0}}=0.053(20)\{0.0231 /[(0.791)(0.417)]\}^{0.2}+0.12+2\{0.0133\{0.0231$ l [(0.791) (0.0833$\left.\left.)]]^{0.2}\right\}[2(0.00694) / 0.000341)\right]=0.62+0.12+0.88=$ 1.62

Above Drag Coefficient Not Exact

- Based on Assumption of Turbulent Boundary Layer
- Soda Straw Rocket Is Small Size and Low Velocity \Rightarrow Laminar Boundary Layer

Example Ballistic Flight Performance

Horizontal Range Equation

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=\left\{2 \mathrm{~W} \cos \gamma_{\mathrm{i}} /\left[\mathrm{g}_{\mathrm{c}} \rho \mathrm{~S}_{\text {Ref }} \mathrm{C}_{\mathrm{D}_{\mathrm{j}}}\right]\right\} \ln \left\{1+\mathrm{t} /\left\{2 \mathrm{~W} /\left[\mathrm{g}_{\mathrm{c}} \rho \mathrm{~S}_{\text {Ref }} \mathrm{C}_{\mathrm{D}_{0}} \mathrm{~V}_{\mathrm{i}}\right]\right\}=\{2\right. \\
& (0.0042) \cos \gamma_{i} /[32.2(0.02378)(0.000341)(1.62)] \ln \{1+\mathrm{t} /\{2(\\
& 0.0042) /[32.2(0.002378)(0.000341)(1.62)(25.8)]\}=199 \cos \gamma_{\mathrm{i}} \ln (\\
& 1+0.130 \mathrm{t})
\end{aligned}
$$

Height Equation
$\mathrm{h}=\left\{2 \mathrm{~W} \sin \gamma_{\mathrm{i}} /\left[\mathrm{g}_{\mathrm{c}} \rho \mathrm{S}_{\text {Ref }} \mathrm{C}_{\mathrm{D}_{\mathrm{f}}}\right]\right\} \ln \left\{1+\mathrm{t} /\left\{2 \mathrm{~W} /\left[\mathrm{g}_{\mathrm{c}} \rho \mathrm{S}_{\text {Ref }} \mathrm{C}_{\mathrm{D}_{0}} \mathrm{~V}_{\mathrm{i}}\right]\right\}+\mathrm{h}_{\mathrm{i}}-\mathrm{g}_{\mathrm{c}}\right.$ $\mathrm{t}^{2} / 2=\left\{2(0.0042) \sin \gamma_{\mathrm{i}} \rho[32.2(0.002378)(0.000341)(1.62)\} \ln \{1+\right.$ $t /\{2(0.0042) /[32.2(0.002378)(0.000341)(1.62)(25.8)]\}+h_{i}-$ $32.2 t^{2} / 2=199 \sin \gamma_{i} \ln (1+0.130 t)+h_{i}-32.2 t^{2} / 2$
Assume $\gamma_{i}=45 \mathrm{deg}, \mathrm{t}=\mathrm{t}_{\text {impact }}=0.9 \mathrm{sec}$

- $R_{x}=199(0.707) \ln [1+0.130(0.9)]=15.5 \mathrm{ft}$
- $h=199(0.707) \ln [1+0.130(0.9)]+h_{i}-32.2(0.9)^{2} / 2=h_{i}+2.5$

Soda Straw Rocket Range Driven by Length,

Outline

- Examples of Parameters and Technologies That Drive Missile Flight Performance
- Missile Flight Performance Prediction

Examples of Maximizing Missile Flight Performance (Workshop)
Summary

Summary

Flight Performance Analysis Activity in Missile Design and Analysis

- Compute Range, Velocity, Time-to-Target, Off Boresight
- Compare with Requirements and Data

Maximizing Flight Performance Strongly Impacted by

- Aerodynamics
- Propulsion
- Weight
- Flight Trajectory

Lecture Topics

- Aerodynamics Parameters, Prediction and Technologies
- Drag Coefficient
- Normal Force Coefficient
- Propulsion Parameters, Prediction, and Technologies
- Thrust
- Specific Impulse

Summarv (cont)

- Lecture Topics (continued)
- Flight Performance Parameters and Technologies
- Cruise Range
- High Density Fuel and Packaging
- Flight Trajectory Shaping
- Range Sensitivity to Driving Parameters
- Missile Follow-on Programs
- Examples of State-of-the-Art Advancements
- Summary of New Technologies
- Flight Performance Envelope
- Videos of Flight Performance
- Modeling of Degrees of Freedom
- Equations of Motion and Flight Performance Drivers
- Steady State Flight Relationships
- Flight Performance Prediction
- Steady Climb and Steady Dive Range Prediction
- Cruise Prediction

Summarv (cont)

- Lecture Topics (continued)
- Flight Performance Prediction (continued)
- Boost Prediction
- Coast Prediction
- Ballistic Flight Prediction
- Turn Prediction
- Target Lead for Proportional Homing Guidance
- Tactical Missile Design Spreadsheet

Workshop Examples

- Rocket Boost-Coast Range
- Rocket Maneuverability
- Rocket Ballistic Range
- Rocket Trajectory Optimization
- Soda Straw Rocket Design, Build, and Fly

Conitguration Sizing Criteria for Maximizing

- Body Fineness Ratio
- Nose Fineness Ratio
- Efficient Cruise Dynamic Pressure
- Missile Homing Velocity
- Subsystems Packaging
- Trim Control Power
- Missile Maneuverability
$5<1 / d<25$
$I_{N} / d \approx 2$ if $M>1$
$\mathrm{q}<700 \mathrm{psf}$
$\mathrm{V}_{\mathrm{M}} / \mathrm{V}_{\mathrm{T}}>1.5$
Maximize available volume for fuel / propellant
$\alpha / \delta>1$
$\mathrm{n}_{\mathrm{M}} / \mathrm{n}_{\mathrm{T}}>3$

[^0]- Bruns, K.D., Moore, M.E., Stoy, S.L., Vukelich, S.R., and Blake, W.B., "Missile Datcom," AFWAL-TR-91-3039, April 1991
- Moore, F.G., et al, "Application of the 1998 Version of the Aeroprediction Code," Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October 1999
- Fleeman, E.L., "Tactical Missile Design," American Institute of Aeronautics and Astronautics, Reston, VA, 2001
- Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, New York, 1974
- "Missile System Flight Mechanics," AGARD CP270, May 1979
- Hogan, J.C., et al., "Missile Automated Design (MAD) Computer Program," AFRPL TR 80-21, March 1980
- Rapp, G.H., "Performance Improvements With Sidewinder Missile Airframe," AIAA Paper 79-0091, January 1979
- Nicolai, L.M., Fundamentals of Aircraft Design, METS, Inc., San Jose, CA, 1984
- Lindsey, G.H. and Redman, D.R., "Tactical Missile Design," Naval Postgraduate School, 1986
- Lee, R. G., et al, Guided Weapons, Third Edition, Brassey's, London, 1998
- Giragosian, P.A., "Rapid Synthesis for Evaluating Missile Maneuverability Parameters," 10th AIAA Applied Aerodynamics Conference, June 1992
- Fleeman, E.L. "Aeromechanics Technologies for Tactical and Strategic Guided Missiles," AGARD Paper presented at FMP Meeting in London, England, May 1979
- Raymer, D.P., Aircraft Design, A Conceptual Approach, American Institute of Aeronautics and Astronautics, Reston, VA, 1989
- Ball, R.E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, American Institute of Aeronautics and Astronautics, Reston, VA, 1985
- Eichblatt, E.J., Test and Evaluation of the Tactical Missile, American Institute of Aeronautics and Astronautics, Reston, VA, 1989
- "DoD Index of Specifications and Standards," http://stinet.dtic.mil/str/dodiss4_fields.htm|"
- Periscope," http://www.periscope.usni.com
- Defense Technical Information Center, http://www.dtic.mill
- "Aircraft Stores Interface Manual (ASIM)," http://www.asim.net
- "Advanced Sidewinder Missile AIM-9X Cost Analysis Requirements Description (CARD)," http://web2.deskbook.osd.mil/valhtml/2/2B/2B4/2B4T01.htm
- Briggs, M.M., Systematic Tactical Missile Design, Tactical Missile Aerodynamics: General Topics, "AIAA Vol. 141 Progress in Astronautics and Aeronautics," American Institute of Aeronautics, Reston, VA, 1992
- Briggs, M.M., et al., "Aeromechanics Survey and Evaluation, Vol. 1-3," NSWC/DL TR-3772, October 1977
- "Missile Aerodynamics," NATO AGARD LS-98, February 1979
- "Missile Aerodynamics," NATO AGARD CP-336, February 1983
- "Missile Aerodynamics," NATO AGARD CP-493, April 1990
- "Missile Aerodynamics," NATO RTO-MP-5, November 1998
- Nielsen, J.N., Missile Aerodynamics, McGraw-Hill Book Company, New York, 1960
- Mendenhall, M.R. et al, "Proceedings of NEAR Conference on Missile Aerodynamics," NEAR, 1989
- Nielsen, J.N., "Missile Aerodynamics - Past, Present, Future," AIAA Paper 79-1818, 1979
- Dillenius, M.F.E., et al, "Engineering-, Intermediate-, and High-Level Aerodynamic Prediction Methods and Applications," Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October, 1999
- Nielsen, J.N., and Pitts, W.C., "Wing-Body Interference at Supersonic Speeds with an Application to Combinations with Rectangular Wings," NACA Tech. Note 2677, 1952
- Burns, K. A., et al, "Viscous Effects on Complex Configurations," WL-TR-95-3060, 1995
- "A Digital Library for NACA," http://naca.larc.gov
- Spreiter, J.R., "The Aerodynamic Forces on Slender Plane-and Cruciform-Wing and Body Combinations", NACA Report 962, 1950
- Simon, J. M., et al, "Missile DATCOM: High Angle of Attack Capabilities, AIAA-99-4258.

Bibliography of Reports and Web Sites (cont)

```
\Lesieutre, D., et al, "Recent Applications and Improvements to the Engineering-Level Aerodynamic Prediction Software
MISL3," AIAA-2002-0274
*Sutton, G.P., Rocket Propulsion Elements, John Wiley & Sons, New York, 1986
* "Tri-Service Rocket Motor Trade-off Study, Missile Designer's Rocket Motor handbook," CPIA 322, May }198
\Chemical Information Propulsion Agency, http://www.jhu.edu/~cpia/index.html
```


Follow-un Communication

I would appreciate receiving your comments and corrections on this text, as well as any data, examples, or references that you may offer.

Thank you,
Gene Fleeman
4472 Anne Arundel Court
Lilburn, GA 30047
Telephone: +1 770-925-4635 (home)
+1 404-894-7777 (work)
Fax: +1 404-894-6596
E-mail: GeneFleeman@msn.com (home)Eugene.Fleeman@asdl.gatech.edu (work)
Web Site: http://www.asdl.gatech.edu

[^0]: - "Missile.index," http://www.index.ne.jp/missile_e/
 - AIAA Aerospace Design Engineers Guide, American Institute of Aeronautics and Astronautics, 1993.
 - Bonney, E.A., et al, Aerodynamics, Propulsion, Structures, and Design Practice, "Principles of Guided Missile Design", D. Van Nostrand Company, Inc., Princeton, New Jersey, 1956
 - Chin, S.S., Missile Configuration Design, McGraw-Hill Book Company, New York, 1961
 - Mason, L.A., Devan, L., and Moore, F.G., "Aerodynamic Design Manual for Tactical Weapons," NSWCTR 81-156, 1981
 - Pitts, W.C., Nielsen, J.N., and Kaattari, G.E., "Lift and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds," NACA Report 1307, 1957.
 - Jorgensen, L.H., "Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like, and Other Bodies at Angles of Attack From 0° to 180°," NASA TND 6996, January 1973
 - Hoak, D.E., et al., "USAF Stability and Control Datcom," AFWAL TR-83-3048, Global Engineering Documents, Irvine, CA, 1978
 - "Nielsen Engineering \& Research (NEAR) Aerodynamic Software Products,"
 http://www.nearinc.com/near/software.htm
 - Jerger, J.J., Systems Preliminary Design Principles of Guided Missile Design, "Principles of Guided Missile Design", D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960
 - Schneider, S.H., Encyclopedia of Climate and Weather, Oxford University Press, 1996
 - Klein, L.A., Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Boston, 1997
 - US Army Ordnance Pamphlet ORDP-20-290-Warheads, 1980
 - Nicholas, T. and Rossi, R., "US Missile Data Book, 1996," Data Search Associates, 1996
 - Bithell, R.A., and Stoner, R.C., "Rapid Approach for Missile Synthesis," AFWAL TR 81-3022, Vol. I, March 1982
 * Fleeman, E.L. and Donatelli, G.A., "Conceptual Design Procedure Applied to a Typical Air-Launched Missile," AIAA 81-1688, August 1981
 - Hindes, J.W., "Advanced Design of Aerodynamic Missiles (ADAM)," October 1993

